SRINIX COLLEGE OF ENGINEERING, BALASORE

PROBABLE QUESTIONS AND ANSWERS

SUBJECT-BETC (2nd semester)

Q1.	Q1.A semiconductor is formed by bonds.	
	Covalent	
2.	Electrovalent	
3.	Co-ordinate Co-ordinate	
4.	None of the above	
Ans	swer: 1	
	semiconductor has temperature coefficient of resistance.	
1.	Positive	
	Zero	
	Negative	
4.	None of the above	
Ans	swer: 3	
Q3.	The most commonly used semiconductor is	
	Germanium	
	Silicon	
	Carbon	
	Sulphur	
	swer: 2	
Q4.	A semiconductor has generally valence electrons.	
1.		
2.		
3.		
4.	•	
	swer: 4	
Q5.	The resistivity of pure germanium under standard conditions is about	
	6×10^4	
	Ω cm	
	60	
	Ω cm	
	3×10^6	
	Ω cm	
	6×10^{-4}	
8.		
	swer: 2	
_	The resistivity of a pure silicon is about	
	$100 \Omega \mathrm{cm}$	
	6000 Ω cm	
	$3 \times 10^5 \Omega \text{ m}$	
4.	$6 \times 10^{-8} \Omega \text{ cm}$	

Ans	swer: 2
	When a pure semiconductor is heated, its resistance
	Goes up
	Goes down
3.	Remains the same
	Can't say
Ans	swer: 2
	The strength of a semiconductor crystal comes from
	Forces between nuclei
	Forces between protons
	Electron-pair bonds
	None of the above
	swer: 3
	When a pentavalent impurity is added to a pure semiconductor, it becomes
	An insulator
	An intrinsic semiconductor
	p-type semiconductor
	n-type semiconductor
	swer: 4
	0. Addition of pentavalent impurity to a semiconductor creates many Free electrons
	Holes
	Valence electrons
	Bound electrons
	swer: 1
	1. A pentavalent impurity has Valence electrons
1.	
2.	
3.	
4.	6
Ans	swer: 2
A12	2. An n-type semiconductor is
	Positively charged
	Negatively charged
	Electrically neutral
4.	None of the above
Ans	swer: 3
Q13	3. A trivalent impurity has valence electrons
1.	
2.	
3.	
4.	
	swer: 4
	4. Addition of trivalent impurity to a semiconductor creates many
	Holes
	Free electrons
	Valence electrons
	Bound electrons
	swer: 1
	5. A hole in a semiconductor is defined as
2.	
4.	The meomphete part of an electron pair bolid

3.	A free proton
4.	A free neutron
	wer: 2
Q16	. The impurity level in an extrinsic semiconductor is about of pure semiconductor.
	10 atoms for 10 ⁸ atoms
	1 atom for 10 ⁸ atoms
	1 atom for 10 ⁴ atoms
	1 atom for 100 atoms
	wer: 2
	. As the doping to a pure semiconductor increases, the bulk resistance of the
	iconductor
	Remains the same
	Increases
	Decreases Name of the selection
	None of the above
	wer: 3
	. A hole and electron in close proximity would tend to Repel each other
	Attract each other
	Have no effect on each other
	None of the above
	wer: 2
	. In a semiconductor, current conduction is due to
	Only holes
	Only free electrons
	Holes and free electrons
	None of the above
	wer: 3
	. The random motion of holes and free electrons due to thermal agitation is called
1.	Diffusion
2.	Pressure
3.	Ionisation
4.	None of the above
Ans	wer:1
	forward biased pn junction diode has a resistance of the order of
1.	
	$k\Omega$
	$\mathrm{M}\Omega$
	None of the above
	wer: 1
	. The battery connections required to forward bias a pn junction are
	+ve terminal to p and -ve terminal to n
	-ve terminal to p and +ve terminal to n
	-ve terminal to p and –ve terminal to n
	None of the above
	wer: 1
	. The barrier voltage at a pn junction for germanium is about
	5 V 3 V
	Zero

6. 3 V Answer: 4 Q24. In the depletion region of a pn junction, there is a shortage of 1. Acceptor ions 2. Holes and electrons 3. Donor ions 4. None of the above Answer: 2 Q25. A reverse bias pn junction has 1. Very narrow depletion layer 2. Almost no current 3. Very low resistance 4. Large current flow Answer: 2 Q26. A pn junction acts as a 1. Controlled switch 2. Bidirectional switch 3. Unidirectional switch 4. None of the above Answer: 3 Q27. A reverse biased pn junction has resistance of the order of 1. Ω 2. kΩ 3. MΩ 4. None of the above Answer: 3 Q28. The leakage current across a pn junction is due to 1. Minority carriers 2. Majority carriers 3. Junction capacitance 4. None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers 3. Majority carriers 3. Majority carriers
 Q24. In the depletion region of a pn junction, there is a shortage of
 Acceptor ions Holes and electrons Donor ions None of the above Answer: 2 Q25. A reverse bias pn junction has
 2. Holes and electrons 3. Donor ions 4. None of the above Answer: 2 Q25. A reverse bias pn junction has
 3. Donor ions 4. None of the above Answer: 2 Q25. A reverse bias pn junction has
 4. None of the above Answer: 2 Q25. A reverse bias pn junction has
Answer: 2 Q25. A reverse bias pn junction has
 Q25. A reverse bias pn junction has
 Very narrow depletion layer Almost no current Very low resistance Large current flow Answer: 2 Q26. A pn junction acts as a
 Almost no current Very low resistance Large current flow Answer: 2 Q26. A pn junction acts as a
 4. Large current flow Answer: 2 Q26. A pn junction acts as a
 4. Large current flow Answer: 2 Q26. A pn junction acts as a
 Q26. A pn junction acts as a
 Controlled switch Bidirectional switch Unidirectional switch None of the above Answer: 3 Q27. A reverse biased pn junction has resistance of the order of Ω kΩ MΩ None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
 Bidirectional switch Unidirectional switch None of the above Answer: 3 (27. A reverse biased pn junction has resistance of the order of Ω kΩ MΩ None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
 Unidirectional switch None of the above Answer: 3 Q27. A reverse biased pn junction has resistance of the order of Ω kΩ MΩ None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
 4. None of the above Answer: 3 Q27. A reverse biased pn junction has resistance of the order of 1. Ω 2. kΩ 3. MΩ 4. None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
Answer: 3 Q27. A reverse biased pn junction has resistance of the order of 1. Ω 2. kΩ 3. MΩ 4. None of the above Answer: 3 Q28. The leakage current across a pn junction is due to 1. Minority carriers 2. Majority carriers 3. Junction capacitance 4. None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers
Q27. A reverse biased pn junction has resistance of the order of 1. Ω 2. $k\Omega$ 3. $M\Omega$ 4. None of the above Answer: 3 Q28. The leakage current across a pn junction is due to 1. Minority carriers 2. Majority carriers 3. Junction capacitance 4. None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers
 Ω kΩ MΩ None of the above Answer: 3 Q28. The leakage current across a pn junction is due to Minority carriers Majority carriers Junction capacitance None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on Junction capacitance Minority carriers
 kΩ MΩ None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
 MΩ None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
 None of the above Answer: 3 Q28. The leakage current across a pn junction is due to
Answer: 3 Q28. The leakage current across a pn junction is due to
Q28. The leakage current across a pn junction is due to
 Minority carriers Majority carriers Junction capacitance None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on Junction capacitance Minority carriers
 Majority carriers Junction capacitance None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on Junction capacitance Minority carriers
 3. Junction capacitance 4. None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers
 4. None of the above Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers
Answer: 1 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers
 Q29. When the temperature of an extrinsic semiconductor is increased, the pronounced effect is on 1. Junction capacitance 2. Minority carriers
effect is on1. Junction capacitance2. Minority carriers
 Junction capacitance Minority carriers
2. Minority carriers
or many control controls
4. None of the above
Answer: 2
Q30. With forward bias to a pn junction, the width of depletion layer
1. Decreases
2. Increases
3. Remains the same
4. None of the above
Answer: 1
Q31. The leakage current in a pn junction is of the order of
1. Aa
2. mA
3. kA
4. μΑ

1.	Equals the number of holes
2.	Is greater than the number of holes
	Is less than the number of holes
4.	None of the above
Ans	swer: 1
Q33	3. At room temperature, an intrinsic semiconductor has
1.	Many holes only
2.	A few free electrons and holes
3.	Many free electrons only
4.	No holes or free electrons
Ans	swer: 2
	4. At absolute temperature, an intrinsic semiconductor has
1.	A few free electrons
2.	Many holes
3.	Many free electrons
4.	No holes or free electrons
Ans	swer: 4
Q3:	5. At room temperature, an intrinsic silicon crystal acts approximately as
	A battery
2.	A conductor
3.	An insulator
4.	A piece of copper wire
Ans	swer: 3
	6. Under normal conditions a diode conducts current when it is
	reverse biased
2.	forward biased
	avalanched
4.	saturated
Ans	swer: 2
Q3′	7. The term bias in electronics usually means
1.	the value of ac voltage in the signal.
	the condition of current through a pn junction.
	the value of dc voltages for the device to operate properly.
	the status of the diode.
	swer: 3
	A crystal diode has
	one pn junction
	two pn junctions
	three pn junctions
	none of the above
	swer: 1
	A crystal diode has forward resistance of the order of
	$\mathrm{k}\Omega$
	Ω
	$ ext{M}\Omega$
	none of the above
	swer: 2
	0. If the arrow of crystal diode symbol is positive w.r.t. bar, then diode is
	sed.
	forward
	reverse
3.	either forward or reverse

4. none of the above
Answer: 1
Q41. The reverse current in a diode is of the order of
1. kA
2. mA
3. μΑ
4. A
Answer: 3
Q42. The forward voltage drop across a silicon diode is about
1. 2.5 V
2. 3 V
3. 10 V
4. 0.7 V
Answer: 4
Q43. A crystal diode is used as
1. an amplifier
2. a rectifier
3. an oscillator
4. a voltage regulator
Answer: 2
Q44. The d.c. resistance of a crystal diode is its a.c. resistance
1. the same as
2. more than
3. less than
4. none of the above
Answer: 3
Q45. An ideal crystal diode is one which behaves as a perfect when forward biased
1. conductor
2. insulator
3. resistance material
4. none of the above
Answer: 1
Q46. The ratio of reverse resistance and forward resistance of a germanium crystal diode is
about
1. 1:1
2. 100:1
3. 1000:1
4. 40,000 : 1
Answer: 4
Q 47. The leakage current in a crystal diode is due to
1. minority carriers
2. majority carriers
3. junction capacitance
4. none of the above
Answer:1
Q48. If the temperature of a crystal diode increases, then leakage current
1. remains the same
2. decreases
3. increases
4. becomes zero
Answer:3
Q49. The PIV rating of a crystal diode is that of equivalent vacuum diode

	the same as
	lower than
	more than
4.	none of the above
Ans	swer :2
Q5(). If the doping level of a crystal diode is increased, the breakdown voltage
1.	remains the same
2.	is increased
3.	is decreased
4.	none of the above
Ans	swer :3
Q51	1. The knee voltage of a crystal diode is approximately equal to
1.	applied voltage
2.	breakdown voltage
3.	forward voltage
4.	barrier potential
Ans	swer :4
Q52	2. When the graph between current through and voltage across a device is a straight line
the	device is referred to as
1.	linear
2.	active
3.	nonlinear
4.	passive
Ans	swer:1
Q53	3. When the crystal current diode current is large, the bias is
1.	forward
2.	inverse
3.	poor
	reverse
Ans	swer:1
Q54	4. A crystal diode is a device
	non-linear
2.	bilateral
3.	linear
4.	none of the above
Ans	swer:1
Q55	5. A crystal diode utilises characteristic for rectification
	reverse
2.	forward
3.	forward or reverse
	none of the above
	swer:2
	6. When a crystal diode is used as a rectifier, the most important consideration is
1.	forward characteristic
	doping level
	reverse characteristic
	PIC rating
	swer:4
	7. If the doping level in a crystal diode is increased, the width of depletion layer
	remains the same
	is decreased

3.	in increased
4.	none of the above
Ans	wer :3
Q58	3. A zener diode has
1.	one pn junction
2.	two pn junctions
3.	three pn junctions
4.	none of the above
Ans	wer:1
	O. A zener diode is used as
	an amplifier
	a voltage regulator
	a rectifier
	a multivibrator
	wer :2
	D. The doping level in a zener diode is that of a crystal diode
	the same as
	less than
	more than
	none of the above
	wer:3
	. A zener diode is always connected.
	reverse
	forward
	either reverse or forward
	none of the above
	wer:1
	2.A zener diode utilizes characteristics for its operation. forward
	reverse
	both forward and reverse
	none of the above
	wer:2
	B. In the breakdown region, a zener didoe behaves like a source.
	constant voltage
	constant current
	constant resistance
	none of the above
	ewer:1
	I. A zener diode is destroyed if it
	is forward biased
2.	is reverse biased
3.	carrier more than rated current
4.	none of the above
Ans	wer :3
Q65	5. A series resistance is connected in the zener circuit to
1.	properly reverse bias the zener
2.	protect the zener
3.	properly forward bias the zener
	none of the above
	wer:2
A66	6. A zener diode is device

1.	a non-linear
	a linear
	an amplifying
	none of the above
	wer :1
	A zener diode has breakdown voltage
	undefined
	sharp
	zero
	none of the above
	wer:2
-	solid state
	vacuum tube
	gas tube
	none of the above
	wer:1
	Mains a.c. power is converrted into d.c. power for
	lighting purposes
	heaters
	using in electronic equipment
	none of the above
Ans	wer :3
	. The disadvantage of a half-wave rectifier is that the
-	components are expensive
2.	diodes must have a higher power rating
3.	output is difficult to filter
4.	none of the above
Ans	wer :3
Q71	. If the a.c. input to a half-wave rectifier is an r.m.s value of $400/\sqrt{2}$ volts, then diode
	rating is
	400/√2 V
	400 V
	$400 \times \sqrt{2} \text{ V}$
	none of the above
	wer:2
-	The ripple factor of a half-wave rectifier is
1.	
	1.21
	2.5
	0.48 wer :2
	There is a need of transformer for
_	half-wave rectifier
	centre-tap full-wave rectifier
	bridge full-wave rectifier
	none of the above
	wer:2
	The PIV rating of each diode in a bridge rectifier is that of the
	ivalent centre-tap rectifier
-	one-half
2	the same as

3.	twice
4.	four times
Ans	wer :1
	6. For the same secondary voltage, the output voltage from a centre-tap rectifier is
	than that of bridge rectifier
	twice
	thrice
	four time
	one-half
	wer :4
	6. If the PIV rating of a diode is exceeded,
	the diode conducts poorly
	the diode is destroyed
	the diode behaves like a zener diode
	none of the above
	wer:2
	A 10 V power supply would use as filter capacitor.
	paper capacitor
	mica capacitor
	electrolytic capacitor
	air capacitor
Answer:3	
	8.A 1,000 V power supply would use as a filter capacitor
	paper capacitor
	air capacitor
	mica capacitor
	electrolytic capacitor
Answer:1	
	The filter circuit results in the best voltage regulation choke input
	capacitor input
	resistance input
	none of the above
	wer:1
Q80. A half-wave rectifier has an input voltage of 240 V r.m.s. If the step-down transformer	
has a turns ratio of 8:1, what is the peak load voltage? Ignore diode drop.	
	27.5 V
	86.5 V
	30 V
	42.5 V
	wer:4
Q81. The maximum efficiency of a half-wave rectifier is	
	40.6 %
	81.2 %
	50 %
	25 %
	wer:1
	. The most widely used rectifier is
	half-wave rectifier
	centre-tap full-wave rectifier
3.	bridge full-wave rectifier
4.	none of the above

Answer :3	
Q83	3. A transistor has
1.	one pn junction
2.	two pn junctions
3.	three pn junctions
4.	four pn junctions
Ans	wer: 2
Q8	4.The number of depletion layers in a transistor is
1.	four
2.	three
3.	one
4.	two
Ans	wer: 4
Q85	5 The base of a transistor is doped
1.	heavily
2.	moderately
3.	lightly
	none of the above
Ans	wer: 3
	6. The element that has the biggest size in a transistor is
	collector
2.	base
	emitter
	collector-base-junction
	wer: 1
	7. In a pnp transistor, the current carriers are
	acceptor ions
	donor ions
	free electrons
	holes
	wer: 4
	B. The collector of a transistor is doped
	heavily
	moderately
	lightly
	none of the above
	wer: 2
	B. A transistor is a operated device
	current
	voltage
	both voltage and current
	none of the above
	wer: 1
	O. In a npn transistor, are the minority carriers
	free electrons
	holes
	donor ions
	acceptor ions
	wer: 2
). The emitter of a transistor is doped
	lightly
	heavily

3.	moderately
4.	none of the above
Ans	wer: 2
Q91	. In a transistor, the base current is about of emitter current
1.	25%
2.	20%
3.	35 %
4.	5%
Ans	wer: 4
Q92	At the base-emitter junctions of a transistor, one finds
	a reverse bias
2.	a wide depletion layer
3.	low resistance
4.	none of the above
Ans	wer: 3
Q93	The input impedance of a transistor is
1.	high
2.	low
3.	very high
4.	almost zero
Ans	wer: 2
	. Most of the majority carriers from the emitter
1.	recombine in the base
2.	recombine in the emitter
3.	pass through the base region to the collector
	none of the above
	wer :3
	5. The current I _B is
	electron current
	hole current
	donor ion current
	acceptor ion current
	wer:1
	. In a transistor
	$I_E + I_B$
	$I_{\rm C} + I_{\rm E}$
	$I_C - I_B$
	$= I_C + I_B$
	wer: 4
_	The value of α of a transistor is
	more than 1 less than 1
	none of the above
	wer: 2
	$B. I_{\rm C} = \alpha I_E + \dots$
1.	
	I _{CEO}
	I _{CBO}
	βI_{B}
	wer: 3
	The output impedance of a transistor is
-	A A

1.	high
2.	zero
	low
	very low
	wer:1
	0. In a tansistor, $I_C = 100$ mA and $I_E = 100.2$ mA. The value of β is
	100
2.	
	about 1
	200
	wer: 4
	11. In a transistor if $\beta = 100$ and collector current is 10 mA, then I_E is
	100 mA
	100.1 mA
	110 mA
	none of the above
	wer: 2
	2. The relation between β and α is
	$\beta = 1/(1-\alpha)$
	$\beta = (1 - \alpha) / \alpha$
2.	$\beta = \alpha / (1 - \alpha)$
	$\beta = \alpha / (1 - \alpha)$ $\beta = \alpha / (1 + \alpha)$
	wer: 3
	3. The value of β for a transistor is generally
1.	·
	less than 1
	between 20 and 500
	above 500
	wer: 3
	3. The most commonly used transistor arrangement is arrangement
	common emitter common base
	common collector
	none of the above
	wer: 1
	4. The input impedance of a transistor connected in arrangement is the
_	common emitter
	common collector
	common base
	none of the above
	wer: 2
	5. The output impedance of a transistor connected in arrangement is the
	nest
	common emitter
	common collector
	common base
	none of the above
	wer: 3
	6. The phase difference between the input and output voltages in a common base
arra	angement is

1. 180°

	90°
3.	270°
4.	$0^{\rm o}$
Ans	wer : 4
Q10	77. The power gain in a transistor connected in arrangement is the highest
	common emitter
2.	common base
3.	common collector
	none of the above
Ans	wer: 1
	8. The phase difference between the input and output voltages of a transistor connected
	ommon emitter arrangement is
1.	
2.	180°
	90°
	270°
	wer: 2
	9. The voltage gain in a transistor connected in arrangement is the
high	
	common base
	common collector
	common emitter
	none of the above
	wer: 3
	0. As the temperature of a transistor goes up, the base-emitter resistance
	decreases
	increases
	remains the same
	none of the above
	wer: 1
	1. The voltage gain of a transistor connected in common collector arrangement is
	equal to 1
	more than 10
	more than 100
	less than 1
	wer: 4 2. The phase difference between the input and output voltages of a transistor connected
	ommon collector arrangement is
	180°
2.	
	90°
	270°
	wer: 2
	3. $I_C = \beta I_B + \dots$ I_{CBO}
2.	
	I _{CEO}
	$\alpha I_{\rm E}$
	wer: 3
	4. $I_C = [\alpha / (1 - \alpha)] I_B + \dots$
1.	I_{CEO}

2.	I_{CBO}
3.	
	$(1-\alpha)$ I_B
	swer: 1
	15. $I_C = [\alpha / (1 - \alpha)] I_B + [/ (1 - \alpha)]$
	I_{CBO}
	I_{CEO}
3.	
4.	
	swer: 1
	16. BC 147 transistor indicates that it is made of
	germanium
	silicon
	carbon
	none of the above
	swer: 2
	17. $I_{CEO} = () I_{CBO}$
1.	·
	$1 + \alpha$
	$1 + \beta$
	none of the above
	swer: 3
	18. A transistor is connected in CB mode. If it is not connected in CE mode with sam
	s voltages, the values of I_E , I_B and I_C will
	remain the same
	increase
	decrease
	none of the above
	swer: 1
	19. If the value of α is 0.9, then value of β is
1.	
	0.9
	900
• •	90
	swer: 4
	20. In a transistor, signal is transferred from a circuit
	high resistance to low resistance
	low resistance to high resistance
	high resistance to high resistance low resistance
	swer: 2
	21. The arrow in the symbol of a transistor indicates the direction of
	electron current in the collector
	hole current in the emitter
	donor ion current
	swer: 3
	wer: 3 22. The leakage current in CE arrangement is that in CB arrangement
	more than
	less than
	the same as
	none of the above
Τ.	HOME OF HIS WOOTE

Answer: 1
Q.123.Transistor biasing represents conditions
1. a.c.
2. d.c.
3. both a.c. and d.c.
4. none of the above
Answer: 2
Q.124.Transistor biasing is done to keep in the circuit
1. Proper direct current
Proper alternating current
3. The base current small
4. Collector current small
Answer: 1
Q125. Operating point represents
2. The magnitude of signal
3. Zero signal values of I _C and V _{CE}
4. None of the above
Answer: 3
Q126. If biasing is not done in an amplifier circuit, it results in
Unfaithful amplification
3. Excessive collector bias
4. None of the above
Answer: 2
Q127. Transistor biasing is generally provided by a
1. Biasing circuit
2. Bias battery
3. Diode
4. None of the above
Answer: 1
Q128. For faithful amplification by a transistor circuit, the value of V_{BE} should for a silican transistor.
a silicon transistor
1. Be zero
2. Be 0.01 V
3. Not fall below 0.7 V
4. Be between 0 V and 0.1 V
Answer: 3
Q129. For proper operation of the transistor, its collector should have
1. Proper forward bias
2. Proper reverse bias
3. Very small size
4. None of the above
Answer: 2
Q130. For faithful amplification by a transistor circuit, the value of V_{CE} should for
silicon transistor
1. Not fall below 1 V
2. Be zero
3. Be 0.2 V
4. None of the above
Answer: 1
Q131. The circuit that provides the best stabilization of operating point is

Q132. The point of intersection of d.c. and a.c. load lines represents		
3. Potential divider bias 4. None of the above Answer: 3 Q132. The point of intersection of d.c. and a.c. load lines represents	1.	Base resistor bias
4. None of the above Answer: 3 Q132. The point of intersection of d.c. and a.c. load lines represents	2.	Collector feedback bias
Answer: 3 Q132. The point of intersection of d.c. and a.c. load lines represents	3.	Potential divider bias
Q132. The point of intersection of d.c. and a.c. load lines represents	4.	None of the above
1. Operating point 2. Current gain 3. Voltage gain 4. None of the above Answer: 1 Q133. An ideal value of stability factor is	Ans	wer: 3
1. Operating point 2. Current gain 3. Voltage gain 4. None of the above Answer: 1 Q133. An ideal value of stability factor is	Q13	32. The point of intersection of d.c. and a.c. load lines represents
2. Current gain 3. Voltage gain 4. None of the above Answer: 1 Q133. An ideal value of stability factor is		
3. Voltage gain 4. None of the above Answer: 1 Q133. An ideal value of stability factor is		
4. None of the above Answer: I Q133. An ideal value of stability factor is		
Q133. An ideal value of stability factor is		
$ \begin{array}{c} 1. & 100 \\ 2. & 200 \\ 3. & More than 200 \\ 4. & 1 \\ \hline \textbf{Answer}: \textbf{4} \\ \hline \textbf{Q134}. & \textbf{The zero signal } I_C \textbf{is generally}$	Ans	wer: 1
$ \begin{array}{c} 1. & 100 \\ 2. & 200 \\ 3. & More than 200 \\ 4. & 1 \\ \hline \textbf{Answer}: \textbf{4} \\ \hline \textbf{Q134}. & \textbf{The zero signal } I_C \textbf{is generally}$	Q13	33. An ideal value of stability factor is
3. More than 200 4. 1 Answer: 4 Q134. The zero signal I_C is generally		N COLUMN TO THE
4. 1 Answer: 4 Q134. The zero signal I_C is generally	2.	200
Answer: 4 Q134. The zero signal I_C is generally	3.	More than 200
Q134. The zero signal I _C is generally	4.	1
amplifier 1. 4 2. 1 3. 3 4. More than 10 Answer: 2 Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to	Ans	wer: 4
amplifier 1. 4 2. 1 3. 3 4. More than 10 Answer: 2 Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to	Q13	34. The zero signal I_C is generally mA in the initial stages of a transistor
 4 1 3 3 More than 10 Answer: 2 Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to		
 3. 3 4. More than 10 Answer: 2 Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to		
 3. 3 4. More than 10 Answer: 2 Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to	2.	1
Answer: 2 Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to		
Q135. If the maximum collector current due to signal alone is 3 mA, then zero signal collector current should be at least equal to	4.	More than 10
collector current should be at least equal to	Ans	wer: 2
collector current should be at least equal to	Q13	35. If the maximum collector current due to signal alone is 3 mA, then zero signal
 6 mA mA 3 mA 1 mA Answer: 3 Q136. The disadvantage of base resistor method of transistor biasing is that it		
 3 mA 4 l mA Answer: 3 Q136. The disadvantage of base resistor method of transistor biasing is that it		
 4. 1 mA Answer: 3 Q136. The disadvantage of base resistor method of transistor biasing is that it	2.	mA
Answer: 3 Q136. The disadvantage of base resistor method of transistor biasing is that it	3.	3 mA
Q136. The disadvantage of base resistor method of transistor biasing is that it	4.	1 mA
 Is complicated Is sensitive to changes in β Provides high stability None of the above Answer: 2 Q137. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO changes by 1 μA, then I_C will change by	Ans	wer: 3
 Is sensitive to changes in β Provides high stability None of the above Answer: 2 Q137. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO changes by 1 μA, then I_C will change by	Q13	36. The disadvantage of base resistor method of transistor biasing is that it
4. None of the above Answer: 2 Q137. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO changes by 1 μA, then I _C will change by 1. 100 μA 2. 25 μA 3. 20 μA 4. 50 μA Answer: 4 Q138. For good stabilsation in voltage divider bias, the current I ₁ flowing through R1 and R2 should be equal to or greater than 1. 10 I _B 2. 3 I _B 3. 2 I _B	1.	Is complicated
4. None of the above Answer: 2 Q137. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO changes by 1 μA, then I _C will change by 1. 100 μA 2. 25 μA 3. 20 μA 4. 50 μA Answer: 4 Q138. For good stabilsation in voltage divider bias, the current I ₁ flowing through R1 and R2 should be equal to or greater than 1. 10 I _B 2. 3 I _B 3. 2 I _B 4. 4 I _B	2.	Is sensitive to changes in β
Answer : 2 Q137. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO changes by 1 μ A, then I_C will change by 1. 100 μ A 2. 25 μ A 3. 20 μ A 4. 50 μ A Answer : 4 Q138. For good stabilsation in voltage divider bias, the current I_1 flowing through R1 and R2 should be equal to or greater than 1. 10 I_B 2. 3 I_B 3. 2 I_B 4. 4 I_B	3.	Provides high stability
Q137. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO changes by 1 µA, then I _C will change by	4.	None of the above
changes by 1 μ A, then I_C will change by	Ans	wer: 2
1. $100 \mu A$ 2. $25 \mu A$ 3. $20 \mu A$ 4. $50 \mu A$ Answer: 4 Q138. For good stabilsation in voltage divider bias, the current I_1 flowing through R1 and R2 should be equal to or greater than 1. $10 I_B$ 2. $3 I_B$ 3. $2 I_B$ 4. $4 I_B$	Q13	37. The biasing circuit has a stability factor of 50. If due to temperature change, ICBO
2. $25 \mu\text{A}$ 3. $20 \mu\text{A}$ 4. $50 \mu\text{A}$ Answer : 4 Q138. For good stabilsation in voltage divider bias, the current I₁ flowing through R1 and R2 should be equal to or greater than 1. $10 I_B$ 2. $3 I_B$ 3. $2 I_B$ 4. $4 I_B$	cha	nges by 1 μ A, then I _C will change by
3. $20 \mu\text{A}$ 4. $50 \mu\text{A}$ Answer: 4 Q138. For good stabilsation in voltage divider bias, the current I_1 flowing through R1 and R2 should be equal to or greater than 1. $10 I_B$ 2. $3 I_B$ 3. $2 I_B$ 4. $4 I_B$	1.	100 μΑ
4. $50~\mu A$ Answer: 4 Q138. For good stabilsation in voltage divider bias, the current I_1 flowing through R1 and R2 should be equal to or greater than 1. $10~I_B$ 2. $3~I_B$ 3. $2~I_B$ 4. $4~I_B$		
Answer: 4 Q138. For good stabilsation in voltage divider bias, the current I_1 flowing through R1 and R2 should be equal to or greater than $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
Q138. For good stabilsation in voltage divider bias, the current I_1 flowing through R1 and R2 should be equal to or greater than $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4.	50 μΑ
R2 should be equal to or greater than $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Ans	wer: 4
1. 10 I _B 2. 3 I _B 3. 2 I _B 4. 4 I _B		
 3 I_B 2 I_B 4 I_B 		
3. 2 I _B 4. 4 I _B		
$4. 4 I_{B}$		
Answer: 1		
	Ans	wer: 1

Q139. The leakage current in a silicon transistor is about the leakage current
germanium transistor
1. One hundredth
2. One tenth
3. One thousandth
4. One millionth
Answer: 3
Q140. The operating point is also called the
1. Cut off point
2. Quiescent point
3. Saturation point
4. None of the above
Answer: 2
Q141. For proper amplification by a transistor circuit, the operating point should be
located at the of the d.c. load line
1. The end point
2. Middle
3. The maximum current point
4. None of the above
Answer: 2
Q142. The operating point on the a.c. load line
1. Also line
2. Does not lie
3. May or may not lie
4. Data insufficient
Answer: 1
Q143. The disadvantage of voltage divider bias is that it has
1. High stability factor
2. Low base current
3. Many resistors4. None of the above
Answer: 3
Q144.Thermal runaway occurs when 1. Collector is reverse biased
Transistor is not biased
3. Emitter is forward biased
4. Junction capacitance is high
Answer: 2
Q145. The purpose of resistance in the emitter circuit of a transistor amplifier is to
Limit the maximum emitter current
2. Provide base-emitter bias
3. Limit the change in emitter current
4. None of the above
Answer: 3
Q146. In a transistor amplifier circuit $V_{CE} = V_{CB} + \dots$
$1. V_{\mathrm{BE}}$
$2. 2V_{BE}$
$3. 5 V_{BE}$
4. None of the above
Answer: 1
Q147. The base resistor method is generally used in

in a

1.	Amplifier circuits
	Switching circuits
3.	Rectifier circuits
4.	None of the above
Ans	wer: 2
	8. For germanium transistor amplifier, V_{CE} should for faithful amplification
	Be zero
	Be 0.2 V
	Not fall below 0.7 V
	None of the above
	wer: 3
	9. In a base resistor method, if the value of β changes by 50, then collector current will
	nge by a factor
1.	
2.	100
	200
	wer: 2
	60. The stability factor of a collector feedback bias circuit is that of base
	stor bias.
	The same as
	More than
	Less than
	None of the above
	wer: 3
	11. In the design of a biasing circuit, the value of collector load $R_{\rm C}$ is determined by
••••	******
	V _{CE} consideration
	V _{BE} consideration
	I _B consideration
	None of the above
	wer: 1
	22. If the value of collector current I_C increases, then the value of V_{CE}
	Remains the same
	Decreases Increases
	None of the above
	wer: 2
	3 . If the temperature increases, the value of V_{CE}
	Remains the same
	Is increased
	Is decreased
	None of the above
	wer: 3
	4. The stabilisation of operating point in potential divider method is provided by
	••••
1.	R _E consideration
2.	R _C consideration
3.	V _{CC} consideration
	None of the above
	wer: 1
Q15	5. The value of V_{BE}

	Depends upon I_C to moderate extent
	Is almost independent of I _C
	Is strongly dependant on I _C
	None of the above
	swer: 2
	56. When the temperature changes, the operating point is shifted due to
	Change in I _{CBO}
	Change in V _{CC}
	Change in the values of circuit resistance
	None of the above
	swer: 1
	57. The value of stability factor for a base resistor bias is
	$R_{\rm B}$ (β +1)
	$(\beta+1)R_{\rm C}$
	$(\beta+1)$
	1-β
	swer: 3
	58. In a particular biasing circuit, the value of R _E is about
	$10 \text{ k}\Omega$ $1 \text{ M}\Omega$
	100 kΩ 800 Ω
	swer: 4
	59. A silicon transistor is biased with base resistor method. If β =100, V_{BE} =0.7 V, zero
-	all collector current $I_C = 1$ mA and $V_{CC} = 6V$, what is the value of the base resistor R_B ?
_	105 k Ω
	530 kΩ
	$315 \text{ k}\Omega$
	None of the above
	swer: 2
	60. In voltage divider bias, V_{CC} = 25 V; R_1 = 10 k Ω ; R_2 = 2.2 V; R_C = 3.6 V and R_E =1
	What is the emitter voltage?
	6.7 V
	5.3 V
	4.9 V
	3.8 V
	swer: 4
	61. In the above question (Q38.), what is the collector voltage?
	3 V
	8 V
	6 V
	7 V
Ans	swer: 1
Q16	52. In voltage divider bias, operating point is 3 V, 2 mA. If $V_{CC} = 9 \text{ V}$, $R_C = 2.2 \text{ k}\Omega$, what
	ne value of R _E ?
	2000Ω
2.	1400Ω
3.	800Ω
4.	1600Ω
Ans	swer: 3