SRINIX COLLEGE OF ENGINEERING AND TECHNOLOGY, BALASORE

ENGINEERING PHYSICS, SEC=A+B

OBJECTIVE QUESTIONS

1.	A device which converts electrical energy in the form of a current into optical energy is called as
	a) Optical source
	b) Optical coupler
	c) Optical isolator
	d) Circulator
2.	How many types of sources of optical light are available?
	a) One
	b) Two
	c) Three
	d) Four
3.	The frequency of the absorbed or emitted radiation is related to difference in energy E between the higher energy state E_2 and the lower energy state E_1 . State what h stands for in the given equation? $E = E_2 - E_1 = hf$
	a)Gravitation
	b)Planck'sconstant
	c)Permittivity
	d) Attenuation constant
4.	The radiation emission process (emission of a proton at frequency) can occur in ways.
	a) Two
	b) Three
	c) Four
	d) One
5.	Which process gives the laser its special properties as an optical source?
	a) Dispersion
	b) Stimulated absorption
	c) Spontaneous emission
	d) Stimulated emission
6.	An incandescent lamp is operating at a temperature of 1000K at an operating frequency
	of 5.2×10 ¹⁴ Hz. Calculate the ratio of stimulated emission rate to spontaneous emission
	rate.
	a) 3×10 ⁻¹³
	b) 1.47×10 ⁻¹¹
	c) 2×10 ⁻¹²
	c) 2×10 ⁻¹² d) 1.5×10 ⁻¹³

7.	The lower energy level contains more atoms than upper level under the conditions of				
	a) Isothermal packaging				
	b) Population inversion				
	c) Thermal equilibrium				
	d) Pumping				
8.	in the laser occurs when photon colliding with an excited atom				
	causes the stimulated emission of a second photon.				
	a) Light amplification				
	b) Attenuation				
	c) Dispersion				
	d) Population inversion				
9.	A ruby laser has a crystal of length 3 cm with a refractive index of 1.60, wavelength 0.43				
	μm. Determine the number of longitudinal modes.				
	a) 1×10 ²				
	b) 3×10 ⁶				
	c) 2.9×10 ⁵				
	d) 2.2×10 ⁵				
10.	A semiconductor laser crystal of length 5 cm, refractive index 1.8 is used as an optical				
	source. Determine the frequency separation of the modes.				
	a) 2.8 GHz				
	b) 1.2 GHz				
	c) 1.6 GHz				
	d) 2 GHz				
11.	Doppler broadening is a homogeneous broadening mechanism.				
	a) True				
	b) False				
12.	An injection laser has active cavity losses of 25 cm ⁻¹ and the reflectivity of each laser				
	facet is 30%. Determine the laser gain coefficient for the cavity it has a length of 500µm.				
	a) 46 cm ⁻¹				
	b) 51 cm ⁻¹				
	c) 50 cm ⁻¹				
	d) 49.07 cm ⁻¹				
13.	Longitudinal modes contribute only a single spot of light to the laser output.				
	a) True				
	b) False				
14.	Considering the values given below, calculate the mode separation in terms of free				
	space wavelength for a laser. (Frequency separation = 2GHz, Wavelength = 0.5 μm)				
	a) 1.4×10 ⁻¹¹				
	b) 1.6×10 ⁻¹²				
	c) 1×10 ⁻¹²				
	d) 6×10 ⁻¹¹				

- 15. What is the principle of fibre optical communication?a) Frequency modulationb) Population inversion
 - c) Total internal reflection
 - d) Doppler Effect
- 16. What is the other name for a maximum external incident angle?
 - a) Optical angle
 - b) Total internal reflection angle
 - c) Refraction angle
 - d) Wave guide acceptance angle
- 17. A single mode fibre has low intermodal dispersion than multimode.
 - a) True
 - b) False
- 18. How does the refractive index vary in Graded Index fibre?
 - a) Tangentially
 - b) Radially
 - c) Longitudinally
 - d) Transversely
- 19. Which of the following has more distortion?
 - a) Single step-index fibre
 - b) Graded index fibre
 - c) Multimode step-index fibre
 - d) Glass fibre
- 20. In which of the following there is no distortion?
 - a) Graded index fibre
 - b) Multimode step-index fibre
 - c) Single step-index fibre
 - d) Glass fibre
- 21. Which of the following loss occurs inside the fibre?
 - a) Radiative loss
 - b) Scattering
 - c) Absorption
 - d) Attenuation

- 22. What causes microscopic bend?
 - a) Uniform pressure
 - b) Non-uniform volume
 - c) Uniform volume
 - d) Non-uniform pressure
- 23. When more than one mode is propagating, how is it dispersed?
 - a) Dispersion
 - b) Inter-modal dispersion
 - c) Material dispersion
 - d) Waveguide dispersion
- 24. A fibre optic telephone transmission can handle more than thousands of voice channels.
 - a) True
 - b) False
- 25. Which of the following is known as fibre optic back bone?
 - a) Telecommunication
 - b) Cable television
 - c) Delay lines
 - d) Bus topology

ANSWERS

1.a 2.c 3.b 4.a 5.d 6.d 7.c 8.a 9.d 10.c 11.b 12.d 13.a 14.b 15.c 16.d 17.a 18.b 19.c 20.a 21.b 22.d 23.b 24.a 25.d

1. Whenever the magnetic flux changes with respect to an electric conductor or a coil, an EMF is induced in the conductor is Faraday's
 first law second law third law fourth law Two parallel plates are separated by a distance D charged by V volt. The field intensity E is given by, V × D V / D V × D² V²/D The right hand rule for determining the direction of the induced EMF was introduced by
 Faraday Lenz Fleming Maxwell Conductor is static and the field is varying then emf will be induced. This principle is called
 virtually induced emf. dynamically induced emf. static induced emf. none of these

pla	A conductor of length L has current I passing through it, when it is aced parallel to strong magnetic field. The force experienced by the nductor will be
0006.	$BIL. \\ BL^2I. \\ BI^2L. \\ zero. \\ Indicate which of the following material does not retain magnetism permanently. $
0 0 0 7.	 (A) Soft iron (B) Stainless steel (C) Hardened steel (D) None of the above The ratio of intensity of magnetization to the magnetization force is known as
0 0 0	(A) Flux density(B) Susceptibility(C) Relative permeability(D) None of the aboveWhich of the following is not a unit of flux?
0 0 0 0 0 9.	(A) Maxwell (B) Tesla (C) Weber (D) All of the above Temporary magnets are used in
0000	(A) Loudspeakers(B) Generators(C) Motors(D) All of the above

	If a conductor is moved back and forth at a constant rate in a constant magnetic field, the voltage
	he conductor will reverse polarity.
0	(A) True
0	(B) False
11.	Magnetism of a magnet can be destroyed by
0	(A) Heating (B) Hammering
0	(C) By inductive action of another magnet
	(D) By all above methods
	• For which of the following materials the saturation value is the highest?
0	(A) Ferromagnetic materials
0	(B) Paramagnetic materials
	(C) Diamagnetic materials
0	(D) Ferrites
	. The ability of a material to remain magnetized after removal of the magnetizing force is known
as O	(A) Permeability
0	(B) Reluctance
	(C) Hysteresis
	(D) Retentivity
ΔN	ISWERS

 $1.a \quad 2.b \quad 3.c \quad 4.a \quad 5.d \quad 6.a \quad 7.b \quad 8.b \quad 9.d \quad 10.a \quad 11.d \quad 12.d \quad 13.d$