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OBJECTIVE-TYPE QUESTIONS

(1) Infinite number of degrees-of-freedom
system means

(a) maximum number of coordinates
to specify their configuration.

(b) infinitely large number of coordi-
nates to specify their configura-
tion.

(¢) minimum number of coordinates
to specify their configuration

(d) infinite number of natural frequen-
cies of the system.

(2) In the vibration of continuous system
for analysis of problems,

(a) the knowledge of partial dif-
ferential equation is very much
essential.

(b) constant boundary and initial
conditions

(c) the knowledge of partial dif-
ferential equation is very much
essential and constant boundary
conditions and initial conditions

(d) all of the above cases

(3) The one-dimensional wave for lateral
vibration of a string is given by
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(4) Examples of continuous systems are
(a) spring-mass system
(b) spring-mass-damper system
(c) beams, rods, cables, plates
(d) all of the above cases

(1) b (2) c (3)d
(7) d (8) d

Answers

(5) in case of continuous systems

(a) finite number of coordinates
specify their configuration

(b) infinitely large number of coordi-
nates specify their configuration

(c) finite number of natural frequen-
cies specify their configuration

(d) none of the above cases

(6) longitudinal vibration of rods or bars is

given by
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(7) Torsional vibration of uniform shaft or
rods is given by
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(8) The general solution for transverse
vibration of beams is given by

(a) y(x,f)=Ccoscx+ D sin cx

(b) y(x,t)=Acoshcx+ Bsinhcx

(c) Acoshex+ Bsinhcex+ Ccoscx
+ D sin cx

(d) y(x,f)=Acoshcx+ Bsinhcx+
C coscx+ D sin cx

4 c (5) b (6) a
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Q. What is a continuous system ?
How it is different from Multi-degree freedom system ?

Answer :

Rods, beams, and other structural
components on the other hand are
considered as continuous systems which
have an infinite number of degrees of
freedom. The vibration of such systems is
governed by  partial differential
equations which involve variables that
depend on time as well as the spatial
coordinates.

Multi-degree-of-freedom  (multi-DOF)
systems are defined as those requiring
two or more coordinates to describe their
motion. This excludes continuous
systems, which theoretically have an
infinite number of freedoms.



Q. What are the different boundary and initial conditions

for solving a differential equation in Continuous system ?

Ans:
1. Boundary and initial conditions In case of partial differential equations, the

unknown value of constants can be determined by applying either geometric or natu-
ral or both boundary conditions.

2. Geometric boundary conditions These are due to geometric compatibility.

For example, if the bar is fixed at both the ends, the displacement and slope will be
ZEro.

3. Natural boundary conditions These are due to force and moments.

For example, if the bar is hinged at one end, the bending moment at the hinged end
will be zero and so on, whereas the initial conditions are related to time.
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1.a) Deduce the differential equation of lateral vibration of a string .

b) Also, find the solution of the above differential equation.

Answer :

Let us consider a string subjected to a transverse (lateral) vibration under tension ‘7°
of length ‘L’ as shown in Fig. 9.1(a) and let ‘p’ be the mass per unit length.

Assume that tension ‘7" is large and is constant throughout its length ‘L’ also the
amplitude of transverse vibration of the string is very small. For very small displace-
ments of the string, sin 6, = tan 0, = 0,.

Let us consider a small element of length ‘dx’ at a distance ‘x’ from the y-axis as
shown in Fig. 9.1(a). Let this element be displaced through a distance ‘y’ from the
equilibrium position; then the FBD as shown in Fig. 9.1(b).
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Fig. 9.1 String in lateral vibration

From FBD, let ‘0,’ be the angle subtended between the tangent to the small elemental
string and normal to the elemental string at the left side of the string. Similarly, ‘6,
be the angle subtended between the tangent to the elemental string and normal to the
string, at the right side of the elemental string.

From geometry of the Fig. 9.1(b) in FBD, tan 0, =

g.
If °6,’ is very small, tan 6, = 6,
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Resolving the forces along y-axis,
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Tsin 6, + (—éxwl dx) — T'sin 6, = Mass x Acceleration

32y

oF

T91+§dx "“Tel:p'dx

where p.dx = Mass of the small element of length ‘dx’
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This is a one-dimensional wave equation for lateral vibration of string and the con-
stant ‘a’ as the wave propagation velocity.

This equation has four arbitrary constants and can be solved by boundary and initial
conditions.

Solution of wave equation The lateral deflection ‘y’ along the string is a func-
tion of the variables ‘x’ and ‘#’. So it can be written as y = y(x, 7). .94

Let us assume the harmonic mode of vibration as the system is undamped.
Thus, solution of Eq. 9.3 can be written as y (x, 1) = X(x) 7(%). wrod)
Substituting the above solution in Eq. 9.3, we get

a &x 1 dT
X 2T a2 ..9.6
dx ar
In this equation, LHS is a function of ‘x’ alone and RHS is a function of ‘7’ alone.
The above two can only be equal if each of the above equations is a constant. These
constants will be ‘zero’, ‘negative’ or it may be ‘positive’. If we consider ‘zero’ or
‘positive constant’ then there is no vibratory motion which is contrary to our observa-
tions for the practical systems. So we put it equal to some constant Z°.
X (Z) d’T
= ( )X Oand— +T°=0 9.7
dx dr’
The solutions of the above two equations are

X(x) =4 cos (Z)x + B sin (Z) x, I(f) = C cos Zt + D sin Zt.
The general solution can be written as
yx, =2 (A,, cos(Z) x+ B, sin ( ) ) [C,cosZt+ D, sinZt] ..9.8
n=1

In this equation, ‘Z’ is the frequency of vibration. The values of arbitrary parameters
A4,, B,, C, and D, in the above equation, can be determined by assuming boundary
and 1n1t1al conditions.



1. Boundary conditions  Let us assume the string is fixed at both ends, i.e.

¥(0,5)=0and y(L,H)=0 3.9
2. Initial conditions Assuming the initial displacement and velocity as,

at t=0, y,0)=S)

at t=0, y(x,0)=V(x) ...9.10.

Using these boundary conditions of equations 9.9 and 9.10 in Eq. 9.8, we have
y(0,18) =4,(C,cos Zt + D, sin Zt) gives 4,= 0

y(L, ) =B, sin (Z) L(C,cos Zt+ D,sin Zt), ifB,#0

which gives sin (%) L=sinnr=0 2901
This equation is called frequency equation.

Z, nma » T nrw \/7

—L ng,Z, = A ( Sl = 5), so frequency Z, = 7 \p rad/s ..9.12

nax

7’ ..9.13
Each ‘n’ represents a mode of vibration example for » = 1 (first mode) » = 2 (second
mode) and so on. Equation 9.8 can be written as

Normal mode shape can be written as X(x) =

« . hix ,
y(x, 1) =2 sin I C,cos Z,t+ D, sin Z,t ..9.14
n=1
The values of constants ‘C,’” and ‘D,’ can be determined from initial conditions,
i.e. displacement is s (x) at = 0 and velocity is v(x) at 7 = 0.
nix

Applying initial conditions for above equation, s(x) =2 C, sin 7 ..9.15
n=1

Wi)=X ZD,sin T ..9.16
n=1

Multiply the equations 9.15 and 9.16 each by sin ?, where m=1,2,3...
and integrate from x = 0 to L.

L L
Thus, E[ s(x) sin % dx =£ C, (sin nzzx sin mzz:x ) dx

. NX . mmx ; ; ;
sin —— and sin —7 are orthogonal functions and the value of the above integral will

be zero except when m = n.

Replacing m = n for nonzero value of ‘C,’, we get

L
$(x) sin " dx = J C, sin® " dx

L
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s (x) sin X = E[ ( I ) x
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So C, = L£ () sin "7 dx ..9.17

Similarly considering Eq. 9.16,

_[v(x) sm—dx Z, ,,I sin ™. sin th dx.
For nonzero value of D, replace m = n

L

j v(x) sin 7% gy = Z,D ,,j sin’

0

2 p nmx
D, = Z L E[ v(x) sin —— dx. 918
Q. Derive the differential equation of Longitudinal vibration of a

rod or bar .

ANS Let us consider a prismatic bar of length ‘L’ subjected to longitudinal vibration as
shown in Fig. 9.2(a). Let ‘A’ be the cross-sectional area of the bar, ‘E’ be the Young’s
modulus of the materials, ‘p’ be the density of the material, and ‘m’ be the mass per
unit length.

Let us assume that the bar should be thin and of uniform cross-section throughout of
its length and subjected to axial force ‘F” and there will be displacements ‘u’ along
the rod that will be a function of both positions ‘x’ and time ‘#’, because the rod has
an infinite number of natural modes of vibration. The distribution of the displace-
ments will differ with each mode as shown in Fig. 9.2(a).

Let us consider a small elemental length ‘dx’ at a distance ‘x’ from the left end and
‘F” be the axial force on a small elemental length. The force on the other side, i.e.

right side of small elemental length is equal to (F 4+ il dx)
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Fig. 9.2 Longitudinal vibration of rods

If ‘u’ is the displacement at a distance ‘x’ from the left side and (u + g—x dx) dis-

placement at a distance x + dx at the right side of small elemental length. Now it is
clear that from FBD as shown in Fig. 9.2(b), due to these axial forces on the small



elemental length ‘dx’ there is a changed length by an amount equal to (u + g dx — u)
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u
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We know from mechanics of materials, when an element or a body is subjected either
to the tension or compression, it undergoes stress, strain and deformation.

By definition of strain (e ) = Change in length /original length

ou
—dx
_ox _ou
€ =" =% 919

Net force acting on the small element,

F
(F + 3—x ax) — F = (Mass) x (Acceleration of the element)

2
= dm x 2=, where dm = Mass of the small elemental length

o’
.9.20

p = Density and dx A = Volume of the small elemental length

We know that definition of stress (6) equal to load /area or 6 = i or F=0A.

A
JoF _do (aF) (ac)
- 2 — A, o dx = . dx A .9.21
Equation 9.20 can be written with the help of above equation as
80) 0%u
(ax dxA = (pdxA) ( Y ) ..9.22

According to Hooke’s law, stress o< strain ‘within’ elastic limit, i.e. 0« €, 0= E€ or

E- [ Stress
€’ Strain

2
— E, where E = Young’s modulus, 6 = € E, (a") dxd = (a ) dxAE
ox o
..9.23

With the help of Eq. 9.22 and Eq. 9.23,

2,
we get, (% )dxAE (pdxA) (a )

But( au)[Eq9l9]

E\ 0 (du) _(o%)| E(o’u)_0%  ,0% _0d
(p)ax(ax)*(atz)p( ) atz, a8x2 atz,wherea =Elp
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This is the wave equation which is identical to Eq. 9.3 or | — =
ox* a° at
The general solution will be same as in the previous case of lateral vibrations.
A solution of the form is as in u(x, ) = X(x) 7(?)
Zx Z ,x
So X(x) = As1n—+Bcos , I(t)=CsinZ t+ D cos Z,t
will result into the general solution as
s ZII ZH
u(x,t)=2% \Asin—-x+ Bcos— x| (CsinZ,t+ D cos Z,1) ..9.25
n=1
EXAMPLE 9.1
Derive the frequency equation of longitu- _[————————— T >x
dinal vibration for a free-free beam with v
zero initial displacement. y
Fig. p-9.12  Longitudinal vibration of

Solution The system is as shown in Fig.
p-9.1.

We know that the general solution of longitudinal vibration of a uniform bar is given
by Eq. 9.25

a beam

= ZII le
u(x, 1) =2, (A sin - x + B cos x) (CsinZ,t+ D cos Z,1).
n=1,2,3.

where a = \/§ and Z, = 2xf,; Z, is the natural frequency.

The boundary conditions for the above particular system (free-free beam with zero

ou

= d(ax

initial displacement) are (gi) ) = 0 (for free end on both ends,
x=L

0
strain is zero). -

Differentiating the above equation (9.25) w.r.t. ‘x’ partially and applying these bound-
ary conditions to the general solution, we get

au Zn le Z" Z"
(a_x) =\d—cos;x-—B—sinx)(CsinZt+DcosZyt) ..926

ou Z,
= —A—(Cstt+Dcos B o A=0
0x /x=0

ou Z, . Z,
(—) = —B—sin—x (Csin Z,t+ D cos Z,1),
0x /x=L

( Z, Z)
—B—sin— L) (CsinZt+ D cos Z,1)



By using solution of wave equations 9.17 and 9.18, we can determine the values of
constants ‘C” and ‘D’ from initial conditions.

Z
Sosm—L 0, sinnm, Z, =nLﬂ,n—l 2,3...

We know that Z, = 27f,, 27f, =

E
Therefore, the natural frequency f, = Z a,buta = \g

E
ey \F , ‘n’ represent the order of the mode.

n

EXAMPLE 9.2

Derive an expression for the free longitudi-

X
nal vibration of a uniform bar of length °L’, N

one end of which is fixed and the other end < L >

is free as shown in Fig. p-9.2. y

Solution We know that the general solution
of longitudinal vibration of a uniform bar is
given by Eq. 9.25.

Fig. p-9.2 Uniform bar

> ZH le
u(x, ) =2 (A sin - x + B cos - x) (CsinZ,t+ D cos Z,1)
n=1,2,3.

The boundary conditions for above particular system (one end of which is fixed
and other end is free) are

(#),—o = 0, (displacement is zero at fixed end) and

(a—") = 0, (strain is zero at free end).
ax x=L

Differentiating Eq. 9.26 w.r.t. ‘x’ partially, we get

au Zn Zn Zn 3 Zn .
(—) =\4d—4cosx—B—sinx)(CsinZt+DcosZp) ..927

ox
Applying the boundary conditions to the general solution of Eq. 9.1, we have B =0
Z, Z, Z,
0=4-,cos,L(CsinZz+ D cos Z,1)orcos -
wheren=1,3,5...
And 4% 0. Z—L— ”2” Z, =% But Z, = 27f,, 27f, = ”“”

n |E E
fn‘ﬁ\g —\g

The general solution of longitudinal vibration of a uniform bar can be written as

- nat
u(x, ) = X, sin 22 (¢ sin 2% ¢+ D cos 2
n1335. 2L ( 2L 2k )



EXAMPLE 9.3

A bar of uniform cross-section having length ,
‘L’ is fixed at both ends as shown in Fig. p-9.3.A
bar is subjected to longitudinal vibrations hav-
ing a constant velocity ‘v,’ at all points. Derive
suitable mathematical expression of longitudi-

nal vibrations in the bar. Fig, P-9-3 Uniform bar

4
X

~
Y

Solution As we know that the general solution of
longitudinal vibration of a uniform bar (9.25) can be written as

. Zn Z"
u(x, ) =2 (A sin - x + B Cos - x) (CsinZ,t+ D cos Z,t)
n=1,2,3.

The boundary conditions, for the above particular system (fixed at both ends) are
x =0, displacement = (),

re.u(0,H=0, ul,H=0

By using the first boundary condition, in the above general solution of longitudinal
vibration of a uniform bar (9.25), we get

u(x,f)= 2 sin %
n=1,2,3.
B=0
And by using second boundary conditions, we have ’T =0=sinnn

B _hma E
n=123.,butZ = 7 ¢ \E

Substituting these value of Z, in Eq. 9.20, we get

(Csin Z,t+ D cos Z,1)

Again the initial conditions are u(x, 0) =0, u(x,0)=7V,

By using the first initial condition in the above general solution, we get

0=% sin"D,D=0
n=1,2,3,... L
. - . hox :
Then the equation is u(x, )=2  sin I CsinZt

n=1,2,3,...

By using the second initial condition in the above general solution, we get

nmx

Then the equationis u(x, ) =2  sin I CZ,cos Zt
n=1,23,...
i(r,0)= Y CZ,sin -y,
n=1,23,... L
L
2 nmx 2V,L

or C=—+)Vysin——dx(Eq.9.18) C= 1 —cosnr

nmwa .(’; 0 L ( q ) nznza( )

4V,L
So C whenn=1,3,5... andC=0whenn=2,4,6...

nzn'za



Finally, the required expression can be written as

4Vl = 1 . nmx . nma
> — sin sin t

u(x, r) =
’ nZa n=1,3,5,... nZ L L

EXAMPLE 9.4

Determine the normal function for free lon-

X
gitudinal vibration of a uniform bar of length
‘L’ and uniform cross-section. Both ends of the
bar are fixed as shown in Fig. p-9.4. 5 L >

Solution As we know, the general solution ofa 7
longitudinal vibration of a uniform bar (9.25) can  Fig. p-9.4 Longitudinal vibration
be written as of a uniform bar

> ZH ZH
ux,H)= 2 (A sin - x + B cos x) (Csin Z,t+ D cos Z,f)
n=1.23.
The boundary conditions for the above particular system (fixed at both ends) are
(u)x 0 (u)x 1~
The displacements of this bar at its ends are equal to zero.

Substituting these boundary conditions into the general solution, we have

Z
(u)x:(,: [Ccos )x+Dsm ] QorC=0
1= ,3,

s Zn Z nn‘a

w,.;,= X T |D sin = 0 or sin =0 and Z, > where
x=L n a L
n=1,23,...

n=123, ..
Hence, the normal function is X, (x) = D sin Tm, n=1,2,3..

EXAMPLE. 9.5

A bar of length ‘L’ fixed at one end and con- < L i
nected at the other end by a spring of stiff- % "

ness ‘k’ is as shown in Fig. p-9.5. Derive a

suitable expression of motion for longitudi- X4
nal vibrations. Fig. p-9.5 Bar fixed at one end and
Solution As we know, the general solution of connected at the other
longitudinal vibration of the bar (9.25) can be end by a spring

written as

> ZH le
u(x, )= 2 (A sin—-x + B cos x) (CsinZt+DcosZ,t) ..9.25
n=12,3.

The general solution of longitudinal vibration of a uniform bar whose one end is
fixed and other end is free can be written as (similar to Example 9.2).



nxm
u(x, f) = ”Zl sin 7L (CsmitwLDco Zt)

The boundary conditions for the above particular system are
du
ox

Applying the second boundary conditions, we get

(u),—o=0 AE= < (L, t) = ku(L, t) (Tensile force = Spring force)

AEZH Z nma . Z, ma n
2 €O (Csmir+D Osfr) ksm (Csmit+Dc sfr)

ZL 4EZ,

a " f alis the required equation.

Q. Derive the differential equation of Torsional vibrations

of uniform shaft or rod .
Ans :

The equation of motion for the torsional vibration of the circular uniform shafts are
same as the longitudinal vibration of the uniform bars discussed in one-dimensional
wave equation for lateral vibration of string Eq. 9.3.

Also the method of derivation of these equations is same as that of longitudinal vibra-
tion of bars in Eq. 9.24.

Let us consider a prismatic shaft of length ‘L’ subjected to torsional vibration as
shown in Fig. 9.3(a).

Let us consider a small elemental length of rod ‘dx’ at a distance ‘x’ from left end, let
‘T’ be the applied torque and ‘6’ be the angle of twist at left side of small elemental

length of rod, ( + 3_9 dx) Twist at a distance x + dx from right side due to a applied
x

torque (T g gI dx), as in Fig. 9.3(b), similar to the longitudinal vibration of rods.
X

J = Polar moment of inertia of shaft per unit length
I = Mass moment of inertia

G = Modulus of rigidity of the shaft material

d = Diameter of the shaft

p = Mass density of the material = (Mass X Volume)

From Newton’s second law of motion,

Applied torque (7) = Inertia force x Angular accelerationor 7=171x ®

2 2
Net torque =(T+8—de)—T=I d—eor (a—Td ) (Zitze ..9.28

0x ox




<> I,’ +—dX 9+_dX

X—> dx
(a)

Fig. 9.3 Torsional vibration of uniform shaft

From mechanics of materials, the elementary torsion theory equation g = GTO
0

But 7 Z—f = Twist per unit length or the rate of twist of small elemental length of

rod dx.
T do oT ) 0 (d@)
J—Gd’ T=0G. d,(a dx GJax dx ...9.29
Comparing Eq. 9.28 and Eq. 9.29, we have
0 (de) 4’0
G — dce=1 — ...9.30
ox dr*
For a shaft of constant cross-section ‘GJ’ 1s constant
d = 7c d4 = 3 LAY p.dx (mass moment of inertia)
Substitute the values of ‘I’ and ‘J” in Eq. 9.30. we get,
G99 829 0°0 1 2%6

p82 372 a2(,)_——(x f) where a® = Glp

This is wave equation identical to Eq. 9.3.

o 1%
=5 ..9.31
o a* o
The general solution of the above equation can be written as
= Z,x Z,x
O(x,) =% \Asin——+Bcos ) (CsinZ,zt+ D cos Z}). ..9.32

n=1

EXAMPLE 9.6

Derive the frequency equation of torsional vibrations for a free—free shaft of
length </,

Solution The general solution for equation of torsional vibrations for shaft can be
written as Eq. 9.32:

N Zx Z,x
O(x, ) =X \Asin——+ Bcos——|(CsinZt+ D cos Z,1).
n=1



The boundary conditions for above particular system are

20 (0 - 1) = 0 (strain in zero at both ends), T (L H=0

Applying the above two boundary conditions to the general solution of torsional
vibrations, we get

00 ( Z, &L Z, Z)
ax: A cos 7 7—351n—x— (CsinZ,t+ D cos Z,t) or
80 ZII( ZII . ZII ) .
wa Acosx—Bsin—x)(CsinZt+Dcos Z,p)
g—fZOatx=O
A=0, anda—e—Oatx—l

ox

le . ZII %
0=B-sin L(CsinZt+ D cos Z,1)

5 Zn ; nma nmwa n \/5
sin -/ = sin nr, Z"—TOI‘Zn',f,,—T,f"—ﬁ )

where a = \/% andn=1,2,3, ..

The general solution can be expressed as

_|_
I D cos T

O(x,H)=2  cos e (C sin — nnat)

=133, alL

EXAMPLE 9.7

A uniform shaft of length ‘L’ fixed at one
end and free at the other end is as shown
in Fig. p-9.7. Determine the free torsional

vibration of the shaft. ;/r

Fig. p-9.7 Uniform shaft fixed at one

A
~
Y

Solution The differential equation of motion

for free torsional vibration of a shaft is given end and free at the other
b 9’0 ,080 end
=a ——
Y or or ox*

where 6 = Angular displacement, a® = G/p and Z, = Natural frequencies of the shaft
(ZII - 27rfl‘l)

The general solution for equation of torsional vibrations for a shaft can be written
as

oo 2 Z,
0(x,)=2 (4,cosZ,t+ B,sinZy) (C cos ——x+ D, sin —- x)
n=1,2,3,.

The boundary conditions for the above particular system are
At x=0, 60,H=0



At x =L, GI,(00/0x)=0
where 7, is the polar moment of inertia of the shaft

Using the first boundary conditions, we get

(o]

00,n= % C,(4,cosZt+B,sinZfH=0o0rC,=0.
1=1,23,..

And from second boundary condition, we get

(o]

le
0x, = X (sin = x) (4, cos Z,t+ B, sin Z 1)

n=1,2,3,...
(00/0x),_; = f‘, Zn Ccos é L)(4,cosZt+ B,sinZt)=0
s “
ZII
cos o L=0,2,= % where n=1,3, 5, ...

Hence, the torsional vibration of the shaft is

-« . hmx nmat . hmat
= Y — +
0(x, 1) "=1,3""sm L (A,, €os 7 B, sin L )

where ‘4,’ and ‘B,’ are constants determined by initial conditions of the problem.

EXAMPLE 9.8

Derive the frequency equation for the torsional vibration of a uniform circular
shaft with rotors attached rigidly at the ends as shown in Fig. p-9.8.

Fig. p-9.8 Two-rotor system

Solution The general solution for the torsional vibration of circular shafts can be
expressed as

o0 Z Z
e(xa t) - Z (An COos Znt + Bn Sin Znt) (Cn cos 7" x+ Dll SiIl 7" x)
n=1,2.3,...

where a” = G/p and Z, = Natural frequencies

(" the equations of motion for torsional vibration of a circular shaft and for longitu-
dinal vibration of uniform bars are identical)

The twisting of the shaft at both ends is produced by the inertia forces of the rotors.



The boundary conditions for the above particular system are
At x=0, J,(3°0/0r) = GI,(06/0x)
At x=L, Jy0%0/0r)=-GI,(36/0x)
where G = Shear modulus of elasticity, 7, = Polar moment of inertia.
From first boundary condition, we get
+(Z,GlLJa)D,=0

And from second boundary condition we get

Z,Gl,
Z2Jycos Z,Lla+———sinZ,Lla|C,+
Z.GIL,
,sinZ Lla——,—cosZLla]|D, =0

The frequency equation obtained by equating to zero the determinant of the coef-
ficients of ‘C,” and ‘D, is

Z#Lh i
+
GI, sinZ, L/a|J,

Z,Gl,
a

Z,aJ,
G, cos Z,Lla|=0

7z (cos Z,Lla - (sin Z,Lla+

EXAMPLE 9.9

A pulley of moment of inertia J’ is rigidly attached
to the free end of a uniform shaft of length ‘L’ as
shown in Fig. p-9.9. Determine the frequency equa- ki J

tion for torsional vibration. =~ === 74 ———— o X

A
'\
.

Solution The differential equation of motion for tor-
sional vibration of the shaft are given by Y

2 2 _ _
970 _ a> J 2 ..9.33(a) Fig. p-9.9 Uniform shaft
or ox and pulley
The general solution for the torsional vibration of cir-
cular shafts can be expressed as

ZII ZH
O(x,H)= X (4,cosZ,t+ B, sinZf) (C,, cos - x+ D, sin x)
n=12.3,..

.. 9.33(b)

where a® = G/p and Z, = Natural frequencies

The boundary conditions for the above particular system are
6(0, 1) = 0, — GI,(360/9x),_, = J(3°6/0r’)

i.e. the angular displacement of the shaft at the fixed end is equal to zero and the
restoring torque of the shaft at the free end is equal to the inertia moment of the
pulley.

From first boundary condition C,, = 0; and from secondary boundary condition,

GILZ, ZL

T 2
——(g €08 —, —JZ,

equation.

ZL zL G,
or a  aJZ

n

——- which is the frequency




Derive the differential equation of Transverse vibration of a beam
Ans .

Let us consider a simply supported beam of uniform cross section subjected to trans-
verse vibration as shown in Fig. 9.4.
Assumption made while deriving the expression for transverse vibration of beams
are the following:
1. The deformation of the beam is assumed due to moment and shear force.
2. There are no axial forces acting on the beam and effects of shear deflection
are neglected.

We know from mechanics of materials, the differential equation of motion for the
transverse vibration of beam, the deflection curve of a beam is given by

El—=-M ..9.34

Fig. 9.4 Transverse vibration of beams

where y = Deflection of the beam, M = Bending moment at any cross-section
EI = known as the Flexural rigidity of the beam and is assumed as a constant.

Differentiating Eq. 9.34 twice, we get

d3y
EI; =_F ...9.35
x
d'y
EI—4 =W ...9.36
dx

where F' = Shear force, W = Intensity of loading.

(As we know the relationship between the shear force ‘F”, the intensity of loading
‘W’ and bending moment ‘AM’).



In case of free transverse vibration of beams without application of external loading,

2
. . . o pA\ oy o
it is very important to consider the inertia forces (—— — as the loading intensity

&/ ar
along the entire length of beam. Then Eq. 9.36 becomes
o'y (pA ) 3%y

L8/ 57

T DT

Here, partial derivatives are used because of the deflection of the beam y’ is a func-
tion of ‘x’ and ‘7.

Elg 3% B 0%y
pA 9x* or
Elg
2_"9°
Let a” = pd
% ,d%
—+a"— =0 ..9.38
o “

is the differential equation of motion for the transverse vibration for a simply sup-
ported beam of uniform cross-section including transverse inertia and stiffness of
the beam.

The general solution for transverse vibration of beams is given by the expression

y(x, ) =Acos hcx+ Bsinhcex+ C cos cx + D sin cx. 9.39

EXAMPLE 9.10

A uniform beam fixed at one end and simply supported at the other end is hav-
ing transverse vibrations. Derive a suitable expression for frequency.

Solution The general solution for transverse vibration is given by the
expression 9.39.
y(x,f)=Acos hex+ Bsin hcx+ Ccos cx+ D sin cx

The boundary conditions for the above particular system are

;)}) ©. 9 for fixed end, dzy &9 for simply supported end
—(0,0=0 X n=0
P dx?

Applying the above boundary conditions for the general solution of transverse vibra-
tion is given by expression,

y(x,f)=Acos hex+ Bsinhex+ Ccos cx + D sin cx
We get y0,f) =4+C=0




Differentiating the above equation w.r.t. x,
y : :
d_x(x’ f)=cl|[Asinhcx+ Bcoshcx—Csincx+ Dcos cx |
Differentiating again the above equation w.r.t. x,
d2

—)z)(x, f) = ¢*[A4 cos h ex + B sin h ex — C cos ex — D sin cx]
X

dy
—x(O, Hh=B+D=0

y(L,t)=A(coshcL—coscl)+ B(sinhcL—sincL)=0and
d’y , . .
F(L’ f)=c“[AcoshcL+BsinhcL—CcoscL—DsincL]=0
X

A(coshcl+coscl)+ B(sinhcl+sincl)=0
A(coshcl—coscl)+ B (sinhcl—sincl)=0
A(coshcl +coscl)y+ B (sinhcl+sincl)=0
Eliminating ‘4’ and ‘B’ from the above two equations, we get
(cos hcl—cos cl) (sin h cl+ sin cl) — (sin h ¢l —sin cl) (cos h cl+ cos cl) =0
Solving it, we get frequency equations as
cosclsinhcl—sinclcoshcl=0

tan c/ =tan A cl

EXAMPLE 9.12

Find frequency equation of a uniform beam fixed at one end and free at the
other end for transverse vibrations.

Solution The general solution for transverse vibration is given by the
expression 9.39
y(x,f)=Acos hcx+ Bsinhcx+ C cos cx + D sin cx.

The boundary conditions for the above particular system are
. . dy
¥(0, ) = 0 (zero deflection at fixed end), T (0, ) = 0 (zero slope)

&y . dy
F (L, t) = 0 (zero bending moment), F (L, f) = 0 (zero shear force)
X X

Applying boundary conditions, we get0=A4 + C, 4 =-C

d
d—i(x,t)=c(A sinhcx+Bcoshex—Csinex+ Dcoscx)=0

Y 0.0=0=B+D B—-D
= 0.0-0- S B



2

d
l L, f)=c*[A (cos h cL + cos cL) + B sincL+sincl)]=0
dx*

P
d_); (L, f) = ¢ [4 (sin A cL —sin cL) + B (cos h cL+ cos cL)] =0
X
[cos & cL + cos cL]? — (sin h* cL —sin® cL) =0
cos h* cL + cos® cL + 2 cos h cL cos cL — sin h% cL + sin® ¢cL = 0
Solving, we get
coshcLcoscL+1=0

The above equation can be solved for cL to find natural frequency of the system.

EXAMPLE 9.12

Derive frequency equation for a beam with both ends free and having transverse
vibrations.

Solution The general solution for transverse vibration is given by the expression
9.39

’ A
y(x,)=A cos hcx + Bsin h cx + C cos cx + D sin cx, where o2 = Z, IL)?—I

The boundary conditions for the above particular system are
2

d

d_); (0, =0 (Because bending moment should be zero)
%

dzy

P (L, ) =0 (Because bending moment should be zero)
X

& y

; (0, ) =0 (Because shear force should be zero)
X

d3y

—5 (L, 1) =0 (Because shear force should be zero)
x

Now applying the boundary conditions, for general solution of transverse vibration,
we get

d2

— D= 2[4 cos h cx + B sin h cx — C cos ¢x — D sin cx]

X

d’y
—0,)=c*(A-C)=0
dxz( )=c"(4-0)

A=C
&y 5. .
F(x, f)=c [Asinhcx+ Bcos hcx+ Csincx— D cos cx]
£



d3y 3
?(0, H=c’[B-D]=0

B=D

d’y 5 . .

— (L, )=c"[A(coshcL—coscl)+B(sinhcL—sincl)]=0
X

%(L, f)=c> [A (sin h cL + sin cL) + B (cos h cL —cos cL)] =0
A(coshcL —coscL)+ B(sinhcL—sincl)=0
A(sin h cL +sincL)+ B (cos h cL —cos cL) =0 or
(cos h cL — cos cL)? — (sin #* cL —sin® cL) =0
cos h? cL + cos® cL — 2¢cos h cL cos cL — sin h* cL + sin® cL =0
cos A% cL —sin h* cL = 1 and cos” cL + sin® cL = 1

coshcl +coscl=1



IMPORTANT EQUATIONS IN VIBRATIONS OF
A CONTINUOUS SYSTEM

1. Laveral vibration of a string  One-dimensional wave equation for lateral
vibration of a string is given by the expression

o’y 1
e S . ...9.40
ox  a* or

The general solution for lateral vibration of a string is given by the expression

= =]

yx, =2 (A,, cos (%)x + B, sin (g)x) [C,cos Zt+ D, sinZt] ..9.41

n=1

2. Longitudinal vibration of bars The differential equation of motion for
longitudinal vibration of bars is given by the expression

Pu_ 1

= — ...9.42
ox>  a* o ?

The general solution for longitudinal vibration of bars is given by the expression

00

ZM ZH
ulx, )= 2 (A sin - x + B cos x) [CsinZt+ Dcos Z,f] v 43

n=l

3.Torsional vibration of circular rods or shafts The differential equation
of motion for torsional vibration of circular rods or shafts is given by the expression

0’0 ,0%°0

32 4 52

ot ox
The general solution for torsional vibration of circular rods or shafts is given by the
expression

..9.44

B Z,x 2l PP .
O(x,) =X \Asin—~+Bcos—~)(CsinZ,t+ Dsin Z,f) K

n=1

4. Transverse vibration of beams The differential equation of motion for
transverse vibration of beams is given by the expression

—+g*—=0 ..9.46

The general solution for transverse vibration of beams is given by the expression
y(x,)=Acos hex+ Bsinhex+ C cos cx+ D sin cx ..9.47



