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Set-1:

OBJECTIVE-TYPE QUESTIONS

(1) All the moving parts of the system
oscillating in the same frequency and
phase are known as

(a)
(b)
(c)
(d)

principle coordinates

first principal mode of vibration
generalised coordinates
principal mode of vibration

(2) Static coupling occurs due to

(a)

(b)
(c)
(d)

static displacements and dynamic
inertia forces

static displacements
dynamic inertia forces
all the above statements are true

(3) Dynamic vibration absorber means

(a)

(b)

(c)

(d)

it 1s possible to make the ampli-
tude of vibration of first mass to
become zero

it is possible to make the ampli-
tude of vibration of second mass
to become zero

it is possible to make the ampli-
tude of vibration of first mass to
become maximum

it is possible to make the ampli-
tude of vibration of mass become
ZEro



(4) In case of a two-degree-freedom
system, masses will vibrate in two
different modes called as

(a) principal-mode vibration
(b) normal-mode vibration
(c) first-mode vibration

(d) none of the above

(5) Centrifugal vibration absorbers are very
effective when

(a) at only one frequency of design

(b) either the speed changes or the
speed fluctuates

(c) only the speed fluctuates
(d) all of the above cases

(6) In case of a semidefinite system, natural

frequency becomes

(a) one of their natural frequencies is
equal to zero

(b) their natural frequency becomes
maximum

(c) both natural frequencies become
zero

(d) both of their natural frequencies
are equal

(7) The principal modes or normal modes

of vibration for systems

(a) having two or more degrees of
freedom are orthogonal

(b) are an important property while
finding the mode shape

(c) are an important property while
finding the mode shapes and
nodes

(d) all of the above cases

(8) In a two-rotor system as shown in Fig.
p.6.8.1, if I, > I,, a node of vibration

Fig. p.6.8.1

(a) between /, and 7, but near to /|

(b) between I, and /, but near to 7,

(c) exactly center between the rotor /,
and /,

(d) near I, but outside

(9) In a two-rotor system as shown in Fig.

p.6.8.1, the frequency equation is given
by

(a) \l < -
a) o =\~ rad/s
boYk (L D)
’kt (I, + 1)
(b) o, = Trad/s
’kt(11+12)
(b) (O Trad/s
LI

12
(d) , \’m rad/s

(10) Lagrange’s method is very suitable

for

(a) the presence of damping force
present in a system

(b) the presence of force present in a
system

(c) the presence of force in function
and damping forces present in a
system

(d) all of the above cases

lies in
Answers
() d (2) b 3)d 4) a 5) b (6) a
(7) a (8) d 9) b (10) ¢



Set-2 : OBJECTIVE-TYPE QUESTIONS

(1) A shaft carrying three rotors will have
(b) three nodes
(d) one node

(a) no node
(c) two nodes

(2) The natural frequencies and mode
shapes can be determined easily and
quickly in case of multi-degree-free-
dom systems

(3) Influence coefficient can be determine
by using
(a) Maxwell’s reciprocal theorem
(b) matrix iteration method
(c) orthogonality principle
(d) Rayleigh-Ritz method

(4) Matrix iteration methods are used to
determine

(a) analysis of problems in natural
frequencies only

(b) analysis of problems in structures,
vibrations, fluid dynamics and
design

(c) large number of mathematical
equations

(d) all of the above cases

(5) Matrix iteration method is used in

(a) determining amplitudes of second
and third modes of vibration

(b) determining the principle modes
or normal modes of vibration

(c) aniterative procedure to determine
the principal modes of the system
and its natural frequencies

(d) an important property while
finding the fundamental natural
frequencies

(1) c (2)b (3) a
(7) a () c

Answers

(a) by solving the number of equa-
tions easily

(b) easily and quickly with the help of
computers

(c) by applying Newton’s second law
of motion only

(d) none of the above cases

(6) In a four-degree-freedom system, the
eigenvalue will be

(a) two eigenvalues
(b) three eigenvalues
(c) four eigenvalues
(d) zero eigenvalue
(7) In eigenvalue problems

(a) the eigenvector will represent the
mode shape

(b) the eigenvector will represent the
natural frequency

(c) the eigenvector will represent the
mode shape as well as natural
frequency

(d) all of the above cases

(8) For a 3-degree freedom system, or-
thogonality principle can be written
as
(a) mA,A, + myB\B,=0
(b) mAAy + myB By + myC ,Cy,=0
(c) mAAy + myB By + myC,C, =0

mAyA3 + myByBy + myCyCy = 0
mA\Ay + myB By + myC C3=0
(d) None of the above cases

4) b (5) ¢ (6) ¢



SHORT-TYPE
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Q. What do you mean by Two degree of freedom system .

Systems that require two independent coordinates to specify the system configura-
tion at any instant are called ‘two-degree-freedom systems’. In such a system there
are two masses which have two equations of motion, treated as coupled differential
equations. Each mass will have its own natural frequency. Sometimes nonharmonic
motion of the masses makes the system more complicated for solving problems.
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Two-degree-freedom systems

Q. Define semi-definite system .

This is defined as a system where one natural frequency is equal to zero. This is also
known as a degenerate system. Consider the system to represent two masses ‘m,’ and
‘m,’ and with a coupling spring ‘4’ as shown in Fig. 6.2(a).

Xy X
L o
m, m, — M —> +— M |—
Y s U myX;

(@) (b)
Semidefinite system




Q. What is Orthagonality Principle.
The principal modes or normal modes of vibration for systems having two or more
degrees of freedom are orthogonal. This is known as orthogonality principle.
This is an important property while finding the natural frequencies.
For a two-degree-freedom system, orthogonality principle can be written as

mlAJéz + M2Ble = 0,

where 4|, B, and 4,, B, are the amplitudes of first and second modes of vibration.



Q. Define Node and Antinode in Vibration.

Ans : There exists nodes and anti nodes in
the vibration.

The point which vibrate with zero amplitude
i.e. The stationary point is called node. The
point of maximum amplitude vibration is
called antinode. If u want to see them fix a
string at both ends and pluck it.

Nodes

4

\

|

Antinodes
- L e
Antinode Antinode Antinode
' } !

Node Node Node Node
' | ! !

Wavelength A

b
A



LONG -TYPE
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EXAMPLE 6.1

Determine the natural frequencies for the following system as shown in
Fig. p-6.1(a) and determine the ratio of amplitudes and locates the nodes for
each mode of vibration and draw the mode shapes. Given, m, = m, k;, = 2k,
my,=2m, k,=k.

FBD

Tk1x1
i l m, l"1 lv’.ﬁ
1 m, X,
m, lkz (X, = xy)
ny _
K Tka (Xz X1)
2 i e ¢x2 l,)'(2
m, myXy

(a) (b)
Fig. p-6.1 Two-degree linear spring-mass system
Solution Now at any instant, give displacement ‘x,’ to the mass ‘m,’and ‘x,’ to the
mass ‘m,’ to Fig. p-6.1(a). The FBD is as shown in Fig. p-6.1(b).
Applying Newton’s second law of motion to mass ‘m,’, assuming that x, > x,
2F =ma
ky (3 —x)) —kyxy =myx,
my Xy + kxy —ky (xy—x) =0
my Xy + kg —koxy +hoxy =0
my Xy + (ky +ky) xp — ke, =0
But the given values of m, = m, k, =2k, k,=k.
mx, + 2k + k) x; — kx, =0, mx, + 3kx; — kx, =0 ...6.1
This is the differential equation of motion of the mass ‘m,’.
Again apply Newton’s second law of motion to the mass ‘m,’.
2F =ma
—ky (xy —x)) =my X,
my Xy +ky (% —xp) =0
my Xy +kyxy —kox; =0
But the given values of ky =2k, m,=2m, k,=k
2mx, + kxy, —kx; =0 ..6.2

This is the differential equation of motion of the mass ‘m,’.



Assume that the motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

= A sin wt X, = B sin ot
x; = WA cos wt x, = B cos wt
X, =—*Asin ot x,=-a" Bsin ot
Using the values of x, x, and x, in Eq. 6.1, we get
m(-Aw” sin ) + 3kA sin @t — kB sin ot =0
—m®* A sin ot + 3 kA sin ot = kB sin ot
A sin ot 3k — mw®) = kB sin wt, A 3k —ma®) = kB

: : A k
The amplitude ratio .- B m .63
Again using the values of x,, x, and X, in Eq. 6.2, we get
2m(— @’ B sin @f) + k(B sin @1) — k(4 sin @) =0
—2ma” B sin ot + kB sin @t = kA sin ot

B sin ot (k — 2ma®) = kA sin ot, B(k — 2ma”) = kA

The amplitude ratio, g % ...6.4
From equations 6.3 and 6.4,
k  _k—md
3k — maw? k

Bk —ma?) (k- 2m(02) =&
312 - 2ma@? x 3k — mo’k + 2m*e* =K, 2mPe* — Thkma? + 2k =0
s Tk o
a — 2— (02 + ; =
This is a quadratic equation in @ where roots are given by

+7_ki\/(7k)2_ﬁ

w = s (D

3 7k /49k2—16k2 ’33/8
16m

a)2=7k 574k
4dm 4m

Tk 5 T4k

—— —5.74k/4m, w5 = P T

wl n 4

@ -03155 a2 31855 - 0.56 \j% rad/s, @,,=1.78 \j% rad /s

where ®,, and @,, are the first and second natural frequencies respectively.



To draw the mode shapes

(i) First mode shape. From Eq. 6.3

4__ k

B 3k ma?
At o =@, =0315 % %= k z

3k—m = 0315 -

A 1 . ;

B 269 e atA=1,B=2.6 [Fig.p-6.1(c)]
(ii) Second mode shape. From Eq. 6.4, % = %
At @ = w5, =3.185 %
At A=1

k

4 _ k—2m x 3.185 m: k—6.37k

B k k

A

B -5.37

A =-5.37 B [Fig. p-6.1(d)]

i Y27
A
A
3 é Node
(c) Same phase (d) Out of phase

Fig. p-6.12 Mode shape

In the first mode of Fig. p-6.1(c) the full spring moves to the right side of the mean
line as it is ‘same phase’.

Whereas in the second mode of Fig. p-6.1(d), the second spring crosses the mean
line as it is ‘out of phase’. The crossed point is called ‘node’ point, i.e. there is no
displacement at that point.

Note: (i) Node is a point in a vibrating system which doesn’t experience any
displacements.

(ii) As number of modes (degree) increases, number of nodes also increases.

EXAMPLE 6.2
Find the natural frequency of the system as shown in Fig. p-6.2(a).

Solution Now at any instant give displacement ‘x,’ to the mass ‘2m’and ‘x,’ to the
mass ‘m’ to Fig. p-6.2(a). The FBD is as shown in Fig. p-6.2(b).
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2 k x,

m

(X3 = X,)
(X = xy)

X3

N
3». x x

Fig. p-6.2 Two-degree linear spring-mass system
Applying Newton’s second law of motion to mass ‘2m’, assuming that x, > x,
XF=ma,2mx, + 3kx, —kx,=0 ...6.5(a)
Newton’s second law of motion to mass ‘m’, mx, + kx, —kx; =0 ...6.5(b)

Assuming that the motion is periodic and is composed of harmonic motions of vari-
ous amplitudes and frequencies, let one of these components be,

x, = A sin ot X, = B sin ot
x; = WA cos wt x, = WB cos wt
X, = —w*4 sin ot X, =— "B sin ot

Using the values of x,, x, and x, in Eq. 6.5 and again using the values of x,, x, and

X, in Eq. 6.5(a) and rearranging, we have 3k — 2m @* A — kB = 0, —kA + (k — mw?)
B=0.

The determents of the coefficient of ‘4’ and ‘B’ are

3k-2me® -k | 2 2 _
iy k_me]—o, Bk —2ma?) (k—ma®) — K =0,
2m*et —5kma® +2 k=0
5k+ \j(Sk)2 — 16K* 5k+3k k
mor = = =—or2k
4 4 2
Kgap ok o [E (2) _3k-2maj,
may, 5 Or &y, =5 s Oy = \5 and mode shape 1), X 2

ma)g,, =2k, @,, = \/%, and mode shape (%)l =-1

EXAMPLE 6.3

Determine the natural frequency and normal modes for the system as shown in
Fig. p-6.3(a). Draw the mode shape and locate the node.

b

Solution Let us at any instant give a vertical displacement ‘x,’ to the first mass ‘m
and ‘x,’ be the second mass as shown in Fig. p-6.3(a). Then the FBD is as shown in
Fig. p-6.3(b). Now apply Newton’s second law of motion to ‘m’ (rectilinear motion).



Two-Degree-Freedom Systems 2221

k kX1

Mass 1| m

X (1) 2 k(x; = Xyp)
2 k(% — %,

Mass2 | m

k x,

(a) (b)

Fig. p-6.3 Two-degree linear spring-mass system

From Newton’s second law of motion, XF = ma
mxl :—kxl—2k(xl—x2), m.iz:—zk(xz—xl)—kxz

mx, +kx; + 2k (x; —x,) =0 ..6.6
This is the differential equation of motion for the mass (1)
mx2+2k(x2—xl)+ka:O ...6.7

This is the differential equation of motion for the mass (2)

Assuming that the motion is periodic and is composed of harmonic motions of varies
amplitudes and frequencies, let one of these components be,

x, =X, sin wt xy, =X, sin @t
X, =—@*X;sinwt ¥, =-&X,sin ot

Using these values in Eq. 6.6 and Eq. 6.7, we have
[-ma*x; + kyx, + 2k(x; — x,)] sin @7 =0,

[-mw*x, + 2k (x, — x,) kx, + ] sin @1 =0

sin @t #0
Bk —ma’) x;-2kx, =0,  (3k—ma’) x, —2kx, =0 ..6.8
X X,
The determinant of the coefficient | (3k — ma?) (=2k) |=0,

(-2k)  GBk-maP)
Bk — ma®) Bk — ma®) — (—2k) (-2k) =0
9% — 3kme’ — 3 kma* + m*w* — 4k* =0

9k — 6kma’ + m*w* —4k* =0 mPw* — 6kma’* + 5K* = 0 divided by m?

6, (67 £
w4—(%)w2+5(%)2=(), o, m * (m)24X5(m)
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m m 12 m
> 3k k 2 3k k » k ) Sk
a)l—ﬁ—Zﬁ, a)z—ﬁ+2ﬁ, wl:m, G)Z_W
W, Z&rad/s, a)2=\/§n7—krad/s

% _
From Eq. 6.8,(x—;)= ” = = - P z%zﬂ
—mo
( L 1) (3k—m><m)
5k
(ﬁ) :(3k—mw§):(3k—mxm):—2k: . Fa_
X2 /2 2k 2k 2x X2 X

To draw the mode shapes

Takex;; =1, x,,=1, x,=-1, xp=-1

The first-mode and second-mode shapes are as shown in Fig. p-6.3(c) and
Fig. p-6.3(d).

(c) (d) First mode (e) Second mode

Fig. p-6.3 Mode shape

EXAMPLE 6.4

Determine the equation of motion and the natural frequencies of the two-de-
gree-freedom system shown in Fig. p-6.4(a). Determine the displacements ‘x,’
and ‘x,’ in terms of natural frequencies.

Solution Now at any instant give linear displacement ‘x,’ to the mass ‘m,’and ‘x,’
to the mass ‘m,’ to Fig. p-6.4(a). The FBD is as shown in Fig. p-6.4(b).

Now applying Newton’s second law of motion to mass ‘m,’, assuming that x, > x,

>F =mx —Take +ve, < Take—ve



k k. — X e
1 2 — X, — X,
my LW m,
5O “— m (— “«— m
TI77777 07777 77777777, 77707 kixy K(Xa= X)) K(X= X)) —>m, X,

(a) (b)
Fig. p-6.4 Two-degree linear spring-mass system
myxy+kxy—kyx, +kx, =0,myx, + (b +ky)x, —kyx, =0 ..6.9
This is a differential equation of motion of mass ‘m,’.
Applying Newton’s second law of motion to mass ‘m,’ XF = mx,
—ky () —x)) =my Xy, myXy+ky (Xy— %) =0,my X, + kpx, —kyx, =0 ...6.10
This is a differential equation of motion of mass ‘m,’.

Assuming that the motion is periodic and is composed of harmonic motions of vari-
ous amplitudes and frequencies, let one of these components be,

x, = A sin wt X, = B sin wt
X, = —Aw’ sin 0t X, =—Ba’ sin ot
Using the value of x,, x, and x, in Eq. 6.9,
m(—A®* sin 1) + (k, + k,) A sin @t — k, B sin @1 =0
—m* A+ (ky+ k) A—kyB=0,A4 [k, +ky)—me’]=k,B

y k,
The amplitude ratio, = 2
B (k,+ k) —m®

..6.11

Using the values of x,, x, and x, in Eq. 6.10,
my(—@” B sin @?) + k, (B sin @f) — k, (4 sin w?) =0
—my@* B+kyB—kyA=0, B(ky—m, @)=k, 4
A k- m20)2
The amplitude ratio, > =——7—— ...6.12
B k,
From equations 6.11 and 6.12,

k, ky — m,@° , o
o +hk)-ma® K > (kp = my @) [(ky + k) —m @] =k

by (ky + y) —myky @ —my (kg + ky) @ + mymy 0 — K2 =0

mmy®* —mky@” — myk, @ — myk, 0 + kyky + k5 — k2 =0

k k k k.k
4 2 2 1 2 9 "2
w —m—za) —m—la)z—m—la) +mlm2—0
k, +k k k.k
4 1 7R K Lo
- m mz]wz_mlmz o




This is a quadratic equation in ®’, whose roots are given by

kytky, k \j(kl +ky, k )2 ke,
+—| £ +—=] —
» ey oy iy iy 4’”1’”2
a) =
2

ki thk, k] ki+k, Kk, \* kk
g, B TR ) _ Mk

| 2m; 2m, 2m;  2m, mirs

='kl+k2Jr k, '_ k1+k2+ k, 2_ kk,
| 2m;  2m, 2m; 2m,] MMy’

kyt+ky, k] kitky, k2 kk
= + + + — g
| 2m;  2m, 2m;  2m,) MMy

Hence the general solutions x, and x, are given by,
x, =4, sin 0t + 4, sin ®,,f, x,=B,sin w,,t+ B, sin w,,t
where 4,, 4, and B,, B, are constants and are evaluated by four initial conditions:
x1(0),  x,(0), x,(0), x,(0).

EXAMPLE 6.5

Determine the natural frequency and the amplitude ratios for the system as
shown in Fig. p-6.5(a). If the mass ‘m,’ is displaced 1 m from its static equilib-
rium position and released, determine the resulting displacements ‘x,’ and ‘x,’.
Givenm;=m,=m,k, =k, =ky=k.

5 3
ki k, ks
my ~WW— M
Q) QO Q)
(a)
FBD
-« m, L > <« m, |e—
kX, ——= Kk, (x,— X;) ky (X — X)) —=
m X, MyX,

(b)
Fig. p-6.5 Two-degree linear spring-mass system

Solution Now at any instant give linear displacement °x,’ to the mass ‘m,’ and ‘x,’
to the mass ‘m,’ to Fig. p-6.5(a). The FBD is as shown in Fig. p-6.5(b).



Now applying Newton’s second law of motion to mass ‘m,’ assuming that x, > x,,
by —xp) — kyxy = my Xy, my Xy 4 kyxy —kyxp + kpxy = 0
my X+ (ky+ ky) xy —kyxy, =0
Given m=m,k;=k,=k
mx, + 2kx; —kx, =0 ..6.13
This is the differential equation of motion for the mass ‘m,’.
Again applying Newton's second law of motion to the mass ‘m,’,
—ky(xy —x) —kyxy =my Xy, My Xyt ksxy kX —kyx =0
my Xyt (k3 + k) X3 — ky x; =0
Given m,=m, ky=ky=k
mx,+2kx,—kx; =0 ..6.14
This is the differential equation of motion for the mass ‘m,’.
Assuming that the motion is periodic and is composed of harmonic motions of
various amplitudes and frequencies, let one of these components be,
x,=Acos ®f, x,=Bcosl ¥ =-A@ cos® X,=-Ba’ cosnt
Using the values of x,, x,, X, in Eq. 6.13,
m(—A @’ cos wf) + 2kA cos @t — kB cos wt=0
Ak — ma’) = Bk

The amplitude ratio =1 & ...6.15

B 2k-ma?
Using the values of x, x, and x, in Eq. 6.14,

m(~B cos @f) & + 2kB cos @t — kA cos wt =0, B 2k — ma*) = kA

2
The amplitude ratio % - 2k—k’"“’- .6.16
From equations 6.15 and 6.16,
k 2k — I’I’l(l)2 2.2
= : 2k — ma)* = ik
2k — ma? k : )
2 4 2 4 s 4k 5 3K
4K — dmka® + m*@* = K, m* 0" — dmke® + 3K =0, ' - @’ + =0
m
) 2
4k \j( ﬁ) 4x3k
m m m2
This is the quadratic equation in @?, where @” = >

2k |4k 3K 2k k
wZ:ﬁi‘\}—z—%=ﬁim 4-3
m m

, 2%k
) —W:I:m
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k
a)%ll - ﬁ

3k
a)%” - W

@y, = \/% rad/s, w,,=1.73 \/% rad/s

where @, and @,, are the first and second natural frequencies respectively.

This resulting displacements ‘x,;’ and ‘x,’ are given by

x, =4, cos @t + A, cos m,,t ..6.17
X, = B, cos @,;,t + B, cOs @,,! ..6.18
Given xy=1matr=0
x,=0atr=0
x,=0atr=0
Differentiating equations 6.17 and 6.18 with respect to time ‘7,
x, —A4; @, sin @t + (-4, @,, sin ®,,f) ..6.19
X, =—-B, ®,,sin ®,,t+ (—B, @,, sin ®,,1) ...6.20
A k » ok
From Eq. 6.15, 7= ——» atw = o), =,
i B 2k—ma? ol
4, k 4,
E——ko B—l— IOI'AI—BI
2k—m m
3k 2 k
2 _ e TR _
e o= @5, = B, 2k—3k

Using the initial conditions in equations 6.17, 6.18, 6.19 and 6.20,
A +4,=1, B, +B,=0, 4,-4,=0, 24,=1

2
Thus, the motions of the masses are given by

X, = % cos (\/% t) + % cos ( 1.73 \/%),Xz = % cos (\/g) —%cos ( 1.73 \/g)

EXAMPLE 6.6

Find the natural frequency of oscillation of the double pendulum as shown
Fig. p-6.6(a) where m;, =m, =m, and [, = [, = [. Draw the mode shapes and locate
the nodes for each mode of vibration.

Solution Now at any instant give an angular displacement to the bobs in Fig. p-6.6(a)
in the horizontal position.



Let ‘6,” and “6,” be the angular displacements of masses ‘m,’and ‘m,’ respectively
from vertical equilibrium positions ‘x,” and ‘x,’. Then the FBD is as shown in
Fig. p-6.6(b).

Fig. p-6.6 Double pendulum

Now applying Newton’s second law of motion to the mass ‘m,’ (considering only
horizontal forces),

mx,+ T, sin 6, —T,sin 6, =0
But considering masses ‘m,’ and ‘m,’,

2v=0

T,cos 0, =m,g, T,cosB =T,cos0,+mg
For small angles of 0, and 0,, cos 6, = 1 and cos 0, = 1
Ty=myg, T\=T,+mg, T =(m+myg
For the geometry of Fig. p-6.6(b),

. %d| ) X9 — %

sin 6, = ——and sin 6, =

Iy L
. X, mg mg
mx, + (m, +m2)gl——7x2+7x1 =0
1

3m m

mx, + gxl - gx2=0 ..6.21

I



Applying Newton’s second law of motion to the mass m, (considering only horizon-
tal force),

—T2 Sin 62 = mziz
Ky — Ky mg mg
x2 S

/

Mmyx, + m,g = , =O,m}c'2+7

X1 ...6.22

Assuming that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies, let one of these components be,

x, = A4 sin ot X, = B sin ot
X, =A@’ sin ot X, =—Ba’ sin ot

Using these values x,, x,, X, in Eq. 6.21,

3m m 3m m
m(—Aa?) + L 4 "8 p_, A(—g—mwz)z—gB
l l / l
A mg
Al — ..6.23
B ( 3mg — mla)z)
Using the values of x,, x, and x, in Eq. 6.22,
m m m m
mBad)+—2p_"8 4-0, B (—g—ma)z) e
' / / l
2
A mg—mlw
B mg ...6.24
From equations 6.23 and 6.24,
mg mg — mlew’
3mg — mlw® mg

(Bmg — mlwz) (mg — mlwz) = (mg)2
3(mg)2 — 3m2gl(u2 - ngla)2 + (ml(uz) = (mg)2
m* P’ — 4m*gla? + 2m*g* = 0

4 2
Po' - 4glw® +2g* =0, o' — 7g o + 2(%) =0
This is a quadratic equation in @’.
4 4¢\2 2
) -exaf3)
@ = 2
2g \jl6 g\2 4 _(8)\2
2T MYislE & £
wmTE 4(1) 4"2(1)
2 2
) L @P=Fag2d

&, == @2-2) @, =S (Z+2)



@t =0.59 g7 . ws =3.41 ‘%

w, =0.77 \E rad/s - w5, =1.85 \E rad/s

To draw the mode shapes
g

(i) First mode shape At @* = wf" =0.59 ] in Eq. 6.23
4__ mg
B 3mg — mlw?
A4 _ g _ g _ g
B 3¢ mia? 3g—l><0.59% 3g-059¢
A 1 : B B
B o4l 1e.4=1, B=241
g 2_,2 —3418, A___ &
(ii) Second mode shape At @ w%n 341 I’ B 3g_34lg’
A 1 . B B
B 04l ie.A=1,B=-041

The first-mode and second-mode shapes are as shown in Fig. p-6.6(d) and
Fig. p-6.6(¢).

V777
V7777774
A=1
A=1
A
~—— Node
B =—0.41
B=2.41
(d) Same phase (e) Out phase

Fig. p-6.6 Mode shapes

EXAMPLE 6.7

Determine the two natural frequencies and the corresponding mode shapes of
the system shown in Fig. p-6.7(a).

Solution Let at any instant give an angular displacement ‘0,’ to the mass ‘m’ and
‘0,” to the mass ‘2m’ from the vertical position and ‘x,” and ‘x,’ from the vertical
equilibrium position to the mass ‘m’ and ‘2m’ respectively in Fig. p-6.7(a). The FBD
is as shown in Fig. p-6.7(b).



ANNNNNNNNN\§ ANNNNN
, L
\
("D
3/
2m)
e—X;

(a) (b)
Fig. p-6.7 Double pendulum

Now applying Newton’s second law of motion to the mass ‘m’, assuming that

x2>xl,
x Xy —X % X —X
) 1. 2~ X 1 27 X%
sin@,=—>sin@,= —— 6 z—sG o
L 2 3/ 1 2 3/

If ‘6, and 0, are very small, sin 6, = 0, and sin 6, = 0,
T,cos 8,=2mg, T, cos0,=mg+T,cos0,

T, =2mg T, =3mg, mx,=T,sin 6,— T, sin 6,

. 11mg 2mgx,
mx, +Txl_ 3 =0 ...6.25
; . 9% 9
x, =—T sin 0,; x2=7—?=0 ...6.26
x, =X, sin @1, x, = X, sin @t
29X
Equations 6.25 and 6.26 become (13—119 — wz)Xl S

48\ 9° 9 9 B
Frequencyequatlonw ~ o 7 +——0 §X+ EY, ~ o X, =0,

518\( =1 932\((%) =2 ++3) ..6.27
(Xz) 0.196, -10.19 ..6.28

EXAMPLE 6.8

Find the natural frequencies of the system shown in Fig. p-6.8(a). Also deter-
mine the ratio of amplitudes and locate the nodes for each mode of vibration.

Draw the mode shapes also.

Solution Now at any instant give displacement ‘y,” to the mass ‘m’ and ‘y,’ to
another mass ‘m’ in vertical position to Fig. p-6.8(a). Then the FBD is as shown in
Fig. p-6.8(b).

Now apply Newton’s second law of motion to the mass ‘m’ assuming that y, > y,.



Tsin @ i

T sin o Tsinf
Tsin6
Fig. p-6.8 System for Example 6.8

Applying Newton’s second law of motion to the mass (1),
XF=mx, Tsin oo—Tsin 0=—-my,,
my,+ Tsin@— Tsin 6=10

From the geometry of the FBD in Fig. p-6.8(b),

Y .. ST | oo g BB W
sin o = l,smﬁ—landsme— Y
5 M1 (J’2—y1) . Y1 X2 Y1
+T—— = + T—-—=+T—-=
my T I\ ) S O T =5 v T =0,
. (T T T,
myy t\ 7+ 515732~ 0
w . 3 T

This is the differential equation of motion of the mass (1).
Applying Newton’s second law of motion to the mass (2),
YF = mx, Tsin @+ Tsin f=—my,, my,+ Tsin B+ Tsin =0

o o V2 (yz—yl)_ . 3Ty T
my2+Tl+T 3] =0, my, + 2 —2[y1—0 ..6.30

This is the differential equation of motion of the mass (2).

Assume that motion is periodic and is composed of harmonic motions of various

amplitudes and frequencies. Let one of these components be,
y; = A4 sin wt ¥, = B sin ot

N = —Aw” sin 0t ¥, = _ B’ sin ot
Using the values of y,, y, and y, in Eq. 6.29,

g o 3T i i Lopi i [3_T_ ]: I
m(—Aw sma)t)+2lAs1na)t 21Bsmwt 0,4 2 ma’ BZI



The amplitude ratio — = L ...6.31
B 37-2mle’
Using the values of y,, ,, ¥, in Eq. 6.30,
2 . 3T T
m(—Bw” sin @7) Y B sin ot — 21A sin wt=0
3T
B| Y —m® ] A
The amplitude ratio 1 M ..6.32
B T
2
From equations 6.31 and 6,32, ——— = 21 —2mi®
37 - 2mlw r
2_ a2 37T+T
o BT -2mla?)? = T2, 3T - 2mle* =+ T, 2mlaf* = 3T+ T, & = e
. 2T _ T _¢If L AT 2T
O ot Tt O™ Vg S - =g =
w5, = 1 41\/7 rad/s
To draw the mode shapes
—a? =L; _ 2 =2,
At o’ = a3, _inEq. 6.31at o =, - inEq. 632,
4_ T T T _q
B 3T 2mie? 37 pmix 2L 37— omix L
ml ml
; B B A_ T _ . _ _
ie. A=1,B=1, B 3T_ar -1, ie.A=1, B=-1

The first-mode and second-mode shapes are as shown in Fig. p-6.8(c) and

Fig. p-6.8(d).

Node l«— | —>]
A=1 B=1 m
B=1
Je— | —>l« 2/ Me— | —R  Je— | —« 2/ > N
(c) Same phase (d) out of phase

Fig. p-6.8 Mode shape

EXAMPLE 6.9
Determine the natural frequencies for the system shown in Fig. p-6.9(a).

Solution Let at any instant give an angular displacement ‘@,’ to the mass ‘m’ and
‘9,” to the mass ‘m’ from the vertical position to Fig. p-6.9(a). The FBD is as shown

in Fig. p-6.9(b).



FBD

Fig. p-6.9 Double coupled pendulum

Now apply Newton’s second law of motion to mass ‘m’ assuming that 6, > ,.
Applying Newton’s second law of motion to the mass (1),
M, = 1,0, ka (6, — 6,) a — mglsin 6, =1, ,, if O is very small, sin 6 ~ 0
Y 1,6 | + mgl 6, — ka* (6,— 6,) =0
But Iy= mP, mPP0 | + mgl 6, + ka*0, — ka*0, =0
ml*0 | + (ka* + mgh0, — ka*0,=0 ..6.33
This is the differential equation of motion for the mass (1).

Apply Newton’s second law of motion to mass (2), —ka (6,— 0,) a —mglsin 8, = Ioé 2%
if 0 is very small, sin 0 = 6

Ioé 2 + ka2 (02 — 91) = mg192
But Iy = mP
ml’@ , + ka*0, + mgll, — ka*0, = 0, mi* 0 , + (ka* + mgl) 0, — ka’0, =0 ...6.34

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

0, = 4 sin ot 0, = B sin ot
6,=-Aw’sin ot 6,=—Ba’sin ot
Using these value of 6, 6,, and 6 , in Eq. 6.33, we have
ml* (—A®” sin ®f) + (ka* + mgl) A sin ot — ka® B sin ot =0
A[(ka2 + mgl) — mPo’] = ka’B
ka’

The amplitude ratio T 5 =— O
B [(ka” + mgl) — mI"®]

Using these values of 6,, 6,, and 6 ; in Eq. 6.34, we have
ml® (B’ sin w?) + (ka* + mgl) B sin @t —ka® A sin ot =0
B[(ka* + mgl) — mPw’] = ka*4



" ; B ka*
The amplitude ratio .. — = 5 5 ...6.36
A [(ka” + mgl) — ml @]

From equations 6.35 and 6.36, [(ka2 + mgl) — mlza)z]2 = [kaz]2

(ka* + mgl) — mPa =+ ka?, mPaw?* = (ka® + mgl) + ka?
wzzka2+mglj:ka2 e :ka2+mgl—ka2 e :ka2+mgl+ka2 o2 g
2 > Yin 2 > Yo 2 > Yln /
ml ml ml
2ka* + mgl 2ka* + mgl
0y, = \E rad/s, @ = —2g’ ®,, = —2g rad/s.
ml ml

EXAMPLE 6.10

Two uniform slender rods weighing w, =131.4 N and
w, = 65.7 N are suspended at their upper ends and
are connected by a spring of stiffness 876 N/m as
shown in Fig. p-6.10. Compute the natural frequen-
cies of the system.

Fig. p-6.20 Uniform rods

Solution Assume that at any instant during the vibra-
tory motion the bars make angles ‘0,” and ‘6,” where 0, > 6,. The compressive force
in the spring is 876 k (8, — 0,). The mass moment of inertia are

ML, (131.4)x 1.8’
3 3x98l1

MLy (65.7) % 0.9°
3 3x98l1

I, = 14.47 kg-m?® I, = = 1.81 kg-m®

Assume that both bars swing in the same direction and using the Newton’s second
law of motion for the moments about the hinges,

1,6, =—w,x09x 0, —k(6,—6,)x 0.9 ..6.37
L,0,=—w,x 0.9 x 0,—k(6,—6,) x 0.9 ..6.38
Assume the solution in the form of 8, = 4 sin wf and 6, = B sin w?.
We have 0 , = -4’ sin ot and 0 , = B’ sin 1.
Substituting these values into equations 6.37 and 6.38, we get

09W,+081k—1aw*)4—-(0.81k)B =0
—(0.81k) A+ (045 W,+081k—L &*)B =0
Substituting the values of W,, W,, kl,, I,, we have
(827.82 - 14.47 @*) A —709.5B =0 ...6.39
~709.56 4+ (739.13-1.81 ®*) B =0 ...6.40
from which we get, @' — 465.6 @* +4152.48 =0

After solving the above quadratic equation, we get frequencies

@, = 3.02 and @, = 21.37 rad/s.



EXAMPLE 6.11

Figure. p-6.11 shows two equal pendulums free to rotate about the Y-Y axis. A
rubber hose of torsional stiffness £, N-mm/rad couples together these pendu-
lums. Find out the two natural frequencies and motion how the two principal
modes may be started.

Fig. p-6.11 Two equal pendulums

Solution Let ‘0,” and ‘0,’ be the angular displacements of the pendulum of mass (1)
and mass (2). Applying Newton’s second law of motion for mass (1) and mass (2),

ml 0, =—k, (6, — 0,) — mglh, ..6.41
is the differential equation for the mass (1).
ml 0, =k (6, - 0,) — mglé, ..6.42

is the differential equation for the mass (2).

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

0, = 4 sin wt 0, = B sin ot
6,=-Aw’sin ot 6, =B’ sin wt

Using the values of 0, 6,, 8, and 8, in equations 6.41 and 6.42,
mlP 0, +k, (6,—60,)+mgle,=0, mP 0,k (6,—6,)+mgld,=0

(k,+ mgl —mP @) A, = kA,, kA, = (k+ mgl—mP &) 4,
Th litude rati 4, k, Ao A, k+mgl-ml @
¢ amplitude ratio, —— = » and also, — =
P 4, k,+ mgl— ml* o’ 4, k;

From these two above equations the frequency is obtained as

k k
k,+ mgl—ml* o* =k, w2=§+—’(1i1),ora>12=\j§+—’(1i1)
I mP ’ I mP

2k
W, = \E rad/s, ®,= §+ —; rad/s

ml



4, k, g
1 g 1, when o, = 7 rad/s
2 h+mﬂ—mﬂ7
with same direction and equal distance and leave to vibrate.
A, k, g 2k
Also — = = -1, when @, = |\ + — > giving equal and
A, (& 2k I mP
k,+ mgl—ml” |~ +—
I mi

opposite angular displacements to the bobs.

EXAMPLE 6.12

Determine the natural frequency for the system shown in Fig. p-6.12(a) and
draw the mode shapes and locate the node for each mode of vibration. Given
L=11I=2I, kt =kt,kt,=kt

1,6, 1,6,
K K~
A/—\91 /\92

I1 12

[ ] kt2 (92 - 91)

k. 6
kn ktz i 1( (
7] 6,
1 ? krz (92 - 91)

(a) (b)

Fig. p-6.12 System for Example 6.12

Solution Let us compare at any instant ‘0,” and ‘6,’ be the angular displacement of
flywheels ‘1’ and ‘I,’ respectively. Let ‘k,” is the torsional stiffness of the connecting
shaft of flywheel ‘/,”and ‘Z,’, then the FBD as shown in Fig. p-6.12(b).

Applying Newton’s second law of motion to disc (Z,), let 6, > 6,
M= 10, kt, (0,— 6,)—kt,0,=1,0 , 1,0 | + kt,0, — kt, (8,— 6,) =0
10, + 2kt0, — kt@, + k16, = 0, 10, + 3kt0, — kt6, = 0 ..6.43
This is a differential equation of motion to the disc (/).
Applying Newton’s second law of motion to the disc (Z,),
SM=10, —kt,(0,—0)=1,0, .. LO,+kt,0,—kt,0,=0
210, + kt6, — kt6, = 0 ..6.44
This is a differential equation of motion to the disc (Z,).

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies.
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Let one of these components be,
0, = 4, sin wt, 0, = 4, sin wt
6, =—A4,0° sin wt, 6,=—A4,0" sin Wt
Substituting these values in equations 6.43 and 6.44, we get
I (-A@?) sin wt + 3kt A sin ot — kt B sin ot =0

A kt
Amplitude ratio - =——— ...6.45
P B 3kt I

2 (-Ba’ sin wf) + kt B sin ot — A kt sin ot =0

kt — 21’
% - T“’ ..6.46
2
From equations 6.45 and 6.46, —— - X210
3kt — I kt
2Pw* — Tkt 0’1 + 2k =0, 0 — L K _ = 0.

21 ]2
This is a quadratic equation in @’

Tkt (—7kt)2 Kl
20 W2/ p

3
aﬁ=0315ﬁ, @, 3185—

@, = 0.56 (rad/s ,, = 1.78 (rad/s

To draw the mode shapes

@ =

At @’ = o}, = 0.315 % in Eq. 6.45,

A _ kt _ 1

5 3kt —1x0.315 x % A

A=1,8=2.69
at o = @2, = 3.185 ’;’ ’; Kt - 4)1189 ~A=1,B=-0.189

3kt — I x 3. 185 — '
Tor B=2.69 % Ne
% % —~B=0.189
(c) First mode shape (d) Second mode shape

Fig. p-6.22 Mode shapes



EXAMPLE 6.13

Find the natural frequencies of the system shown in Fig. p-6.13(a). Also deter-
mine the ratio of amplitudes and the mode shapes. Given I, = I, I, = 21, and

ky,=k,=k,=kt.

Solution Let ‘0,’ and ‘0,’ be the angular displacement of the disc (/) and the disc
(Z,) respectively. Then the FBD is as shown in Fig. p-6.13(b). Then the equation of
motion for the disc (/;) may be written as

Ilé 1= —ktlel + ktz (02 = 01)’ Ile 1 + ktel + kt (01 i 02) . 0
1,0 | +2k,0, — kt6,=0 647

kt, kt, kt,
| ] | ]
,1 12
(a)

kt,

Fig. p-6.23 System for Example 6.13

Similarly, the equation of motion for the disc (/,) may be written as
L0, =—kt,(6,— 0,) —kt;0,, L,0,+kt(6,—6)+kt0,=0
L0, + kt0, + kt0, — kt0, =0, 1,0 ,+ 2kt0, — kt6, = 0
21,0, + 2kt0, — kt0, = 0 ..6.48

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

6, = A4, sin wt, 0, = 4, sin 0t

0, = —Alco2 sin wt, éz = —Azco2 sin @t
Using these values in equations 6.47 and 6.48, we have
—@PIpA, + 2ktA| — ktd, =0, (- @I, + 2kf) A, — kt4, =0
(—20°I,+ 2kt) Ay — ktd, = 0

The amplitude ratios are given by
A, kt (-2@°I, + 2kt)

Ay _@Ply+ 2kt kt
The frequency equation can be written as 2(— 0?1, + 2kf) (- @*I, + k) — kf* =0,

...6.49




2(0'T; — @Ikt + 2kt Iy + 2ki) — kt* = 0, 20 I, — 6 ktlyoo* + 3k =0

3i\j(3’“) 438

ot 3K 3K o b 5 2 I _ L5kt V3 i
lo 22 7 2 Iy 21,
kt kt
So wl—l's\lng_O.SO\/%
4
The amplitude ratios are given by, (A—l) =— ! o = kkt |
2/o1  —@y Iy+ 2kt _(1.5\/7)1 okt
0
kt
-2(0.8)° 7, Tt 2k
4\ -0kt 2k el % _-2x064+2_ .
A2 a)2_ kt kt - 1 B )

Mode shapes are as shown in Fig. p-6.13(b) and Fig. p-6.13(c).

/77774 L
-4 0.72
Node
1.0 1.0
77777 77777777

w, = 1.5JE W, = 0.8\]3
IO IO
(b) ()
Fig. p-6.13 Mode shapes

EXAMPLE 6.14

Derive the frequency equation for the pulley-mass system shown in Fig. p-6.14(a).
The pulley has a mass of ‘M’ and effective radius of ‘R’. Assume that the cord,
which passes over the pulley, does not slip, if £, = 60 N/m, k, =40 N/m, m =2 kg
and M = 10 kg. Determine the natural frequencies and mode shapes.

Solution Let us at any instant give a vertical displacement ‘x’ to the mass ‘m’ as
shown in Fig. p-6.14(a). Since there is no slip between the card and cylinder of mass
‘M, so the vertical displacement ‘x’ causes the cylinder to rotate by an angle ‘0’ as
shown in FBD of Fig. p-6.14(b).

Now applying Newton’s second law of motion to ‘m’ (rectilinear motion),
XF=ma, mx=-k(x—R0)



Fig. p-6.14 Pulley-mass system

For mass M (rotational), J6 =3T

2
But J= %
2
@ 6 =k, (RO—x)R—k, (RO)R ...6.50
JO + k,R*0 — k;Rx + k,R*0=0 ..6.51

This is the differential equation of motion of mass and pulley

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

X = sin wx, 0 = B sin wt
¥ =—Aw’sin of, 6 =-Ba’ sin ot
Using these values in Eq. 6.50, we have
—JBw? sin @t + k, R*B sin ot — k,RA sin @t + k,R* B sin ot =0, sin wt# 0
~JBW* + k,R°B —k\RA+k, R B=0

2
—kRA + [k\R* + k,R* — J&'1 B=0, kRA= [kle + k,R* — MzR w2] B
RS L O
B kR
The frequency equation is equating to two equatlons ratio,
2
(Mz’")R2 ¢ [(MZR )k +m (k+ ky) R |@? + kh,R2= 0
Dividing by MmR*/2
k, 20k +k 2k k
o ﬁl+(lT2) o= 652

This is in the form of a quadratic equation.



The solution is given by the roots of the equation as

ky 2kt ky) \/ ky 2kt k) > 4x2kik,
, T PN T m
Wy, = 2% 1
60 2(60 +40) \j[ 60 2(60 + 40) 4x 2 x 60 x 40
, 127 T 10x2
@y, =
» 5043924
Wy, = 5
o2 =50 +239.24 i

o, =44.62 = 6.68 rad/s

w3 =222 538 0, =538 - 2.319 radss
The amplitude ratios are

.k1+k2—(M)wl] [60+40 (10) 44.62]1

(4) = 2 2 ~ 2,052
B/ k, k60 -

. kl+k2—(1;—/l) wg]R l60+40—(12—0) 5.38] < 1

(E)z - k, - 60 =122

The first-mode and second-mode shapes are as shown in Fig. p-6.14(c) and
Fig. p-6.14(d).

« 2,05 1.22
Node
1.0 1.0
, = 6.68 rad/s w, = 2.32 rad/s
(c) (d)

Fig. p-6.14 Mode shapes

EXAMPLE 6.15
Determine the frequency equation for the system shown in Fig. p-6.15(a) and
determine the natural frequencies if k, =k, =ky;=k,m;,=m,=m and r,=r,=r

Solution Let us at any instant give an angular displacement ‘0,’ to the mass ‘m,’
and ‘8,’ of the mass ‘m,’ as shown in Fig. p-6.15(a). Then the FBD is as shown in
Fig. p-6.15(b). Let 6,> 0,.



k, r, 6,

Fig. p-6.15 Pulley system

Applying Newton’s second law of motion to the disc (1),
SM =10, ky(r,0, — r,0)) ¥, — kyr,0, - r, = 1,6,

L6, + kl”% 0, — kyry (r,6,—r6)) =0

”"2—’2 0, + k\r°0, — kyr*0, + kyr’6, = 0

5 0+ 2k6,—k6,=0
mo | + 4k0, — 2k6,=0 ..6.53

This is the differential equation of motion for the disc (1).
Applying Newton’s second law of motion to the disc (2), XM = 10,

ky(ry0, —1,0)) ry + ksry 0,0, = —Izéz

L0, + kyry (1,0, — 1,0)) + k3r§92 =0
2

T 0, + %0, — k0, + k0, = 0
% 6,+2k0,— k6, =0

mo , + 4k6, — 2k6, =0 ..6.54
This is the differential equation of motion of the disc (2).

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

0, = 4 sin wx, 0, = B sin ot
0, =—-Aw’sin wt, 0, =—Baw’sin ot
Using the values of ‘,”, ‘0,” and 8 , in Eq. 6.52,
—ma* A+ 4kA-2kB=0, A (4k—ma’)=2kB
2k

= ...6.55
4k —mw

SIS



Using the values of “0,’, ‘0,” and 8 , in Eq. 6.54,
—~mw’B + 4kB —2kA =0, B (4k —mw®) = 2kA
A_4k—ma’
B 2k
From equations 6.55 and 6.56,
2k _ 4k-ma’
4k — ma’ 2k
(4k — ma®)’ = k)%, 16K — 8mke” + m*w* = 4k
m* o' — 8mkaw® + 12k* =0
i

k
4 2 _
) —8mw +12—m2—0

This is the frequency equation and this is the quadratic equation in @”.

%i\j(%)u%

...6.56

m m 2

2 m
= 2
2 2
w? 4k, J16F 1k
m m
» 4k 2k
O =Gy

2k 5, 6k
(0:1}‘" “m’ wZII “m

k
o, =141 \jg rad/s, m,, = 2.45 \/; rad/s

where w,, and w,, are first and second natural frequencies.

EXAMPLE 6.16

Determine the frequency equation for the system as shown in Fig. p-6.16(a).

Solution Letus atany instant give a displacement ‘@’ to the mass ‘M’ and the attached
mass ‘m’ as shown in Fig. p-6.16(a). Then the FBD as shown in Fig. p-6.16(b).

From the geometry of Fig. p-6.16(b), let 6> ¢
X=r¢, y=x+1lsinh, y=x+I10andy=x+10

For small angles of ‘0’, let us assume the cylinder is oscillating about the point ‘0’.
cos0=1,sin 0= 6.

Considering mass ‘m’, 2V =0

Tcos 0—mg=0,T=mg,if ‘@ is very small cos 0= 1



Applying Newton’s second law of motion to cylinder, M, = I,¢
2kx.r—Tsin 0.r= 1,0, Iy¢+2krg.r—mg 0.r=0

where Iy= I+ M? =172 M+ M¥*,  I,=3/2 M¥*

_>¢

Fig. p-6.26 System for Example 6.16

%Mrzg}i + 2kr*— mgré =0
5 &
2 Mr ¢+ 2kr¢ —mg0 =0 ...6.57

This is the differential equation of motion for the cylinder.
Applying Newton’s second law of motion to the mass ‘m’,
XF = mx,-T sin 0= my
my +T760=0
mx +ml + mg0=0,10 +g0+x=0,10 +g0+rdp=0 ..6.58
This is the second differential equation of motion for the bob.

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

¢ = 4 sin 0, 0 = B sin ot
¢ =A@’ sin wt, 6 =-Ba’ sin ot
Using the values of, ¢ and 6 in Eq. 6.57,

%Mr (—Aw?) + 2krd — mgB =0, A[zkr—%Mra)z] = mgB

2m
4 & ...6.59

By [4k—3Ma?|




Using the values of 6, 6 and ¢ in Eq. 6.58,

A g- o’l
I(-Ba?) + gB—A 0’r=0, B(g-—’l)=A4 a'r, I ...6.60
ray

2mg g Wl
r[4k - 3Ma’]  ro

From equations 6.59 and 6.60,

(g — 1) (4k — 3Ma®) = 2m w’g, 4kg — 3Mg @* — 4k | @* —2mg &’ + 3M | @* =0
3IMIw* — [3Mg + 4kl + 2mg] @” + 4kg = 0,

This is the frequency equation for the given system.



EXAMPLE 6.17

Two identical cylinders are linked together as shown in Fig. p-6.17(a). Determine
the natural frequencies of the system.

Fig. p-6.17 Cylinder system

Solution Let us at any instant give an angular displacement ‘0,’ to the first cylinder
of mass ‘m’ and ‘8,’ to the second cylinder of mass ‘m’ as shown in Fig. p-6.17(a).
Then FBD is as shown in Fig. p-6.17(b).

Applying Newton’s second law of motion to the cylinder (1), let 8, > 6,

SMp=1,0,—kr(0,—0) r=—1,0, —I,0 +k?0,—k’0,=0

—%mrzélJrkrsz—krzGl:O, —%mél+k01—k62=0 ...6.65

This is the differential equation of motion for the cylinder (1).

Applying Newton’s second law of motion to the cylinder (2),



This is the differential equation of motion for the cylinder (2).

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

0, = 4 sin wt 0, = B sin wt
6,--Ae’sinwt  6,=-Bw’sin ot
Using the values of 6,, 0,, él in Eq. 6.65,
3 > ( 3 ) A 2k
“m(-A))+kA—kB=0, Alk—Sma’|=kB, —=—"—— ..6.67
g ™ A 2 B 2k-3me’
Using the values of 6,, 6,, 6 , in Eq. 6.66,
3 - ( 3 2)_ A4 2k-3mae’
2m(—Ba)2)+kB—kA—O, B (k-5 mo’|=kd, T=""77 ..6.68

From equations 6.67 and 6.68,
2k 2k-3ma’
2k — 3ma’ 2k

4k ,4k
(0%" - 0’ wln =0 a)gn - 3—m9 w2n - 3—m rad/s

Since one of the natural frequencies is zero, the system is a semidefinite system.

» 2k - 3ma®)? = (2k)%, 2k — 3ma® = + 2k, 3maw” =2k + 2k

EXAMPLE 6.18

Two flywheels of moment of inertia ‘Z,” and °I,’ are keyed to the ends of a steel
shaft. Derive an expression for the frequency of free torsional vibrations of the
system shown in Fig. p-6.18(a) and describe the modes.

FDB

Fig. p-6.128 Flywheel system

Solution Let at any instant ‘0,” and ‘6,’ be the angular displacement of flywheels
‘I,” and ‘I, respectively. Let ‘k,’ is the torsional stiffness of the connecting shaft of
flywheel ‘/,’and ‘Z,’. Then the FBD is as shown in Fig. p-6.18(b); assume 6, > 0,

Then twist of the shaft= 0, — 0,.

Then equation of motion is,
1,6, =—k (6, -6, ..6.69
L6 ,=k(6,-6,) ...6.70



Assuming that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

0, = 4 sin 0t, 0, = B sin ot

0, =—Aw’sin ot, 6,=—Bw’ sin 0t

Substituting these values of 8,, 6,, 6 ; and 6 , in equations 6.69 and 6.70,

(k,— @’I) A, = kd,, (k,— @’L) 4, = kA,
From these two equations, we obtained the amplitude ratios as
A, k, k,— o’I,
A2 kt — 602]1 kt
which gives the frequency equation as

..6.71

(k,— @’1) (k,— @’L) =k, & [[,,& —k, (I, + 1,)] = 0

k(I +1)
@, = 0 rad/s and o, = ‘\l¥ rad/s.
I,

Since one of the natural frequencies is zero, the system is a semidefinite system.

Substituting these values of the natural frequencies in the amplitude ratio 4,/4, in
the above equation 6.71, we obtained the two conditions for the principal modes as
shown in Fig. p-6.18(c).

A, k-l A b fk, (I, +1,)
A_z—T_ 1 when @, —OandA—z— I » when @, = Trad/s.

Node / 6,

/
()

Y

A

Fig. p-6.28 Principal modes

EXAMPLE 6.19

An electric train made of two cars weighing 30 kN each has got a spring coupling
of 3000N/mm stiffness as shown in Fig. p-6.19. Determine the natural frequency
of vibration of the system.

Solution For small displacements x; and x, of the two cars, applying Newton’s
second law of motion, we get

mx, =k (x, —x,) ..6.72
mx, =—k (x, —x,) ..6.73



______________________________

B oA S !w}gvm«/i\/(vy—f _________
Ol= OXO,

Fig. p-6.19 Electric train

This is the differential equation for the motion
where k = Stiffness of coupling spring, m = Mass of each car
For principal mode of vibration, let x; = X; sin w?, x,=X, sin @t
Putting these values of x’s and their derivatives above equations 6.72 and 6.73, we
get,
Xi(k—mad) =kX,, kX, =X,(k—ma’)

: : X k k — ma*
The amplitude ratios are 1?2 e ma |k
So, the frequency equation is,

= (k- ma?y, or o = 2%, 2 - 2200 _¢

" 30000
®, = 0.447 rad/s

W, 0447
1= P 0.07 Hz



Suppose at any instant, the body be displaced through a linear distance ‘x’ and angu-
lar distance ‘@’ as shown in Fig. 6.3(b).

Now assuming that at this instant, taking ‘0’ to be small, the springs ‘k,” and ‘k,’” will
be compressed through an amount of (x — /,0) and (x + /,0) respectively from the
equilibrium as shown. Then the FBD of entire system is as shown in Fig. 6.3(c).

Now apply Newton’s second law of motion and write down the differential equations
of motion for the system by considering the ‘x” and ‘0’ direction by taking the forces
and the moments in the respective directions acting on the system.

mx = —k(x = 1,6) — k, (x + ,,0), J6 = kyly (x = 1,0) = kyly (x + 1,0) or

mx +x (ky + k) = (kyly — k,1,)0

JO+ (kP + kyd2) 0= (kyd, — kyly) x ..6.74

ik | o k"%’% 6.75

kil kP,

R J
I 1

Also we known that J = mr?

Substitute all these values in equations 6.74 and it will

' ¥ +Px=00
reduce to

- ( 0 ) ...6.76
0 +RO=|—|x
"2 L

Almost in all earlier cases, we ended up with two differential equations, one for each
mass which are coupled with respect to the two coordinates. In the above cases ‘Q’ is
termed as the coupling coefficient since if Q = 0, the two equations are independent
or uncoupled of each other and therefore give the two motions, one is rectilinear
and the other one is angular. These can exist independently of each other with their
respective natural frequencies VP and VR and in case of uncoupled system when
Q =0, it means k,/, = k,/, the natural frequencies in the rectilinear and angular modes
respectively, are given as below:

' JE+E |
wnlz\/_: : >

m

W, = \/E - J




Now consider the coupled equation 6.76 and let us assume the principal mode of
vibration.

Let x =Xsin o, X=-Xa&’ sin fand
6=pBsin wr, 6 =-f & sin ot ...6.78a
.o - 2 -
X =A@ sin o ..6.78b
= — B’ sin ot
Substutiting these values in equations 6.76 and simplifying, we get
[-@’+P1X=0p
...6.79
;
2
- +R]= (— X
| [ | 2
By these equations we get the amplitude ratios:
A 9 ...6.80
B P&
X R-ao
— = ...6.81
2
2
0 Rl
Therefore, =
P-o* @
2
By simplifying these we get the frequency equation as
%
o' —(P+R) o+ {PR—7 }o ..6.82

This is in the form of a quadric equation of @’ and the roots of the above equation
gives the following two natural frequencies of the system.

2
o, = %(P +R) —\j% (R-P)Y+ %
1 1 0

=, PTR)+ \/Z (R—P)*+ ) ...6.83

These two natural frequencies reduce to that of equations 6.77 when Q = 0 for the
uncoupled case and the mode shape can be got in the usual manner. Also the expres-
sion will not be much meaningful in this particular case due to complexity.

—



EXAMPLE 6.20

An electric motor rotating at 1500 rev/min. drives a centrifugal pump at
500 rev/min, through a single-stage reduction gearing is as shown Fig. 6.4(a). The
moments of inertia of the pump impeller and the electric motor are 1400 kg-m2
and 400 kg-m’ respectively. The pump shaft and the motor shaft are 45 cm and
18 cm long respectively and their respective diameters are 9 cm and 4.5 cm.
Determine the natural frequencies of oscillation. Neglect inertia of gears and
G = 0.8 x 10° kg/cm?.

Solution N, = 1500 rpm, N, = 500 rpm, I, = 400 kg-m?, I, = 1400 kg-m?, /, = 18
em, l,=45cm, d;,=4.5cm,d,=9 cm, G = osx 10° kg/cm®.

: N 1500
Gear ratio n—E, n—m—3
By ool puation, e 20y Ly 2, GBI
y torsional equation, —— L~ 1’ 8 k=7 3]
0.84 x 10" x 7 x (0.045)"*
ky = 30 % 0.45 » k,y = 187869.70 N-m/rad
084x 10" x 7x (009
k, = 30 % 0.45 s k, = 1202366.05 N-m/rad
The given system can be reduced as shown in Fig. 6.4(b),
I
where I, —22 1400
n
k
k== 1202;’266'05 + k,, = 133596.23 N-m/rad
n
Again the system reduces to Fig. 6.4(c). Then the FBD is as shown in Fig. 6.4(d),
where —= i+L e 1 1

Kk k, k 187869.70 ' 133596.23

te

k

t



k, =78075.72 N-m/rad
Applying Newton’s second law of motion to the disc (1), 6, > 6,
SM=10 . k(6,-6)=10,
1,6,+k6, —k6,=0 ..6.84
This is the differential equation of motion for the disc (1).
Applying Newton’s second law of motion to the disc (2),
SM=10,—k(0,—0)=160,  LO,+kb,— k6, =0 ...6.85

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

0, = 4 sin wt, 0, = B sin ot
6 | =—Ao’sinwt, 0 ) = — B’ sin wt
Using these values in Eq. 6.84,
I, (~Aw?) + k, A=k, B, %= .. 6.86

_ L k,—I,0°
Using the values of 0, 0,,0 , in Eq. 6.85,

4 —-Lo*+k  k-Lao’

I.(-Bo?) +kB=kd, 5= % ’ k,e ..6.87
_ k, k+— Lo’ ) s
From equations 6.86 and 6.87, PRy = i s (k,— L") (k,— 1, @) =k,
LL&' — [k I, +kI)o*+k>=k% o [I, I, & —(k 1, +k 1)]=0
w, =0, @ = %,
2 78075.72 [400 + 155.56]
21 400 x 155.56 ’

w5, =697.10 .. w,, =0, ®,, = 26.40 rad/s

Since one of the natural frequencies of the system is equal to zero, the system is
semidefinite.



EXAMPLE 6.21

A spring-mass (k; — M) system is being acted upon by a harmonic force F = F
sin ot (force acting on the mass) as shown in Fig. p-6.21. Another (k, — m) system
is attached to the mass ‘M’. Analyse the system to show that the second system
may act as a vibration absorber if properly designed. Mention how to design it.

k1
—l_ M IF:Fosincot
k, X, %kz
T M IF:Fosinwt =
X 4

Fig. p-6.21  Spring-mass system

Solution As per the statement of the problem, the system is as shown in
Fig. p-6.21.
The system is of two degrees of freedom with a forcing function acting on mass
‘M.
Applying Newton’s second law of motion to mass ‘M’ in Fig. p-6.21, the equations
of motion are

Mx, + kyx + ky (x; — x,) = Fyy sin ot ...6.95

mx, +ky (x,—x) =0 ...6.96
This is the differential equation of motion of masses ‘M’ and ‘m’.

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

x, = 4 sin 01, X, = B sin ot
x; = WA cos W, x, = OB cos Wt
X, =— 0’4 sin ®f, X, =—@B sin ot
Substituting these values in equations 6.95 and 6.96,
M(— @* 4 sin w?) + kA sin ot + k, (4 sin ot — B sin w?) = F, sin ot
m(— " B sin @) + k(B sin @t — A4 sin 0z) =0
(k) +ky—Ma*) A —k,B=F, —k,A+ (ky—maw*)B=0



Fy(ky— ma)
(ky + ky — M) (ky — ma?®) — K

Solving the above equation, 4 =

In order to cut down the amplitude of vibration of mass ‘M’, 1.e. 4 =0, (k, — ma?®)

1{kz
must be equal to zero. Hence, k, = ma” or &° =\

m
ky
@ =N rad/s

The absorber must be, therefore, so designed that its natural frequency is equal to the
impressed frequency. When this happens, the amplitude of vibration of mass ‘M’ is
practically zero.

In general, an absorber is used only when the natural frequency of the original system
k, k

is close to the forcing frequency. Hence, A_; = mz is approximately true for the entire

system.

EXAMPLE 6.22
A two-degree-freedom system is as shown in Fig. p-6.22(a).

Determine the amplitude of masses ‘M’ and ‘m’. What modifications are nec-
essary if the sub-system is to act as a dynamic vibration absorber under the
following condition?

(i) Spring stiffness kept constant.
(ii) The amplitude of the absorber mass is limited to 0.01 cm.
Solution M =10 kg, m = 0.5 kg, k; = 4000 N/m, k, = 500 N/m, F = 50 cos 21¢

Let us at any instant give a vertical displacement ‘x’ to the mass ‘m,’ as shown in
Fig. p-6.22(a). The FBD is as shown in Fig. p-6.22(b).

Applying Newton’s second law of motion to mass ‘M’ LF = Mx

Tk1x1
4000 N/m M |I%
150003211? FlllMX;
0kg 3 . Ky (X, = Xy)
"r Vi,
0.5 kg myX,

Fig. p-6.22 Two-degree-freedom system



Applying Newton’s second law of motion to the mass ‘m’,
XF =mx —k, (x, —x|) = mx,, mx, + kyx, — k,x, ...6.98
This is the differential equation of motion of masses ‘M’ and ‘m’.

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be

x; =X, cos wt, x, =X, cos Wt
X, =—X, 0" cos ot, %, =-X, " cos t
Using these values in equations 6.97 and 6.98,
M(X, @ cos @1) + (k, + k,) X, cos @t — k, X, cos @t = F, cos wt

X, [k, + ky — M@®] — kox, = F, ..6.99
m(—X, @’ cos o)+ k,X, cos Wt —k, X, cos wt=0
k2
X, [k, —ma*| -k, X, =0,X,=|———|Xx ...6.100
2[2 ] 2441 2 [kzmwz] 1
Using Eq. 6.100 in Eq. 6.99, X, =|(k, + ky— Ma?) -~————— |- F,
(ky —ma)
F, (k, — ma?)
X, = 02 ... 6.101
(ky + ky — M@?) (ky — ma®) — k5
Using Eq. 6.101 in Eq. 6.100,
Fok
X, = = ..6.102
(ky + ky — M&?) (k, — ma&®) — k)
. amplitude of the mass ‘M’ is
) 50 (500 - 0.5 x 21%)
Y| (4000 + 500 — 10 x 212) (500 — 0.5(21)%) — (500)>

X, =-6215x 10 °m

. amplitude of the mass ‘m’ is

50 x 500
X, = 2 2
(4000 + 500 — 10 x 212) (500 — 0.521)%) — &2

X,=-1.112x 10 ' m

(1) For the sub-system to act as dynamic vibration absorber, x; = 0

k
From Eq. 6.101, F, (k,— m @) = 0, &’ =m2



ky
Keeping k, constant, m = —;

o’

500
1)

mass ‘m’ » m=113kg

(i1) Given X, = 0.001 m

For dynamic vibration absorber, X; =0

ie. (ky—ma*)=0
From Eq. 6,102, X,~ —0 - k-0
rom Eq. 6.102, =—— o~ k=
q 2 k2 2 X2
k,= =0 5 x 10° N/m. Negative sign may be neglected.
2 0.0001 ’

Note: The vibration absorber must be so designed that its natural frequency is equal

"kz
to the forcing frequency, i.e. ® = ®,, ® = ", rad/s

When this happens, the amplitude of vibration of the mass ‘m,’ of the original system
is equal to zero. In general, a dynamic vibration absorber is used only when the natu-
ral frequency of the original system is close to the forcing frequency (resonance).

ke k. h ;
Hence, o= o, = @,, or my = my 18 true for the entire system.



EXAMPLE 6.23

Determine the pitch and bounce frequencies and the location of oscillation cen-
ters of an automobile with the following data: m = 1000 kg, ry = 0.9 m, distance
between the front axle and centre of gravity = 1 m, distance between the rear
axle and centre of gravity = 1.5 m. Front spring stiffness, k&, = 8 kN/m, rear
spring stiffness k, =22 kN/m.

Solution The equation of motion can be written as
ki, +k kyl, — kil
5e+( ‘ 2)x+(M)e=o L6114

m m

JO = ky (x— 18) [y — ky (x + 1,8) by, mr2 6 + (lply — Ky y) x + (k5 + ky2)8= 0

kol — kKl kP — kP
0+(M)x+(ll 22)9—0 .6.115

2
mrg mrz

Substitute the values of m, k,  and / in equations 6.114 and 6.115.
¥+30x+250=0, 6 +30.86x+70.980=0

Assuming the solution as x = X sin 0f X = —@* X sin ot
0= Bsin wt, 6 =—w? Bsin wt,—w® X+ 30X +25B=0,
—w* B+30.86.X+70.988=0

X 25
X _ ..6.116
B @30



Centre of rotation

Centre of rotation

First mode Second mode

Fig. p-6.23 Oscillation centers of automobile

X _«*-70.98

B 30.86 ..6.117

Equating equations 6.116 and 6.117, we get @* — (30 + 70.98)@* + 1357.9=0
@' —100.98 @* + 1357.9=0

,  100.98 + V100.98% — 4 x 1357.9
> _

@] » > or @; = 3.99rad/s
and a)i = 85.0 or w, = 9.24 rad/s

X\__2 2 177 ..

bl @?-30 3.99-30 1

X\ _ @-7098 92427098 0466

B),  30.86 30.86 1 ‘
EXAMPEL 6.24

A schematic diagram representation of an automobile is shown in Fig. p-6.24(a)
if the automobile weighs 4000 N and has a radius of gyration about the centre
of gravity of 4.5 m. The combined spring stiffness of front springs &, and &, are
3000 N/m and 3250 N/m respectively. Determine the natural frequency of the
system.

RS lkz (x—66)
|<~44>{<—6—>| — X+ 46 l G IGQ 6 0
[ 'G | ¢ S PP L | T T
l _v_T T G J T
k, " k, ki(x+48) .k (x-66)
(a) (b)

Fig. p-6.24 Automobile system



Solution Here, I; = MK? K = Radius of gyration

4000
9.81

Considering the linear moment of the mass, apply Newton’s second law of motion.
The FBD is as shown in Fig. p-6.24(b).
—k, (x +460) —k, (x — 60) = Mx
Mx + kyx + kyx + 4k,0 — 6k,0 =0
Mx +(k, + ky) x + (4k; — 6k,)0=0
407.75x + (3000 + 3250) x + (4 x 3000 — 6 x 3250) 6=0
407.75x + 6250x + (-7500)80=0, x+ 15.33x-18.396=0 ..6.118
Considering the rotation of the mass about its centre of gravity,
EMg =156, —ki(x+46)4+k,(x~66) 6150
I; 0 + 4k, (x + 40) — 6k, (x — 60) =0, I, 0 + (4k, — 6ky)x — (16k; + 36k,)0 =0
8256.88 6 + (4 x 3000 — 6 x 3250) x + (16 x 3000 + 36 x 3250)0 =0
6 +19.986+0.91x=0 ..6.119

Put x = sin Wt 0 = B sin ot
¥ =—Aw*sin ot, 0 =—Bw’ sin ot

Using these value of x, @and 6 in Eq. 6.118,
~Aw’ +15.334-18.39B=0, A[15.33 - w’] = 18.39B

I, = x (4.5)%, I,=8256.88kg—m’, M=407.75kg

A 18.39
4 _ 59 ..6.120
B 1533 - o’
Using the value of x, 8 and 0 in Eq. 6.119,
~Ba’+19.98B-0914=0, B[19.98 - «’]=0.914
A 1998 - &’
¥ 00 ..6.121

From equations 6.120 and 6.121,
1839 1991 — o’

1533 - ® 091
15.33 x 19.98 — (15.33 + 19.98) &’ + @* = 18.39 x 0.91, @* — 35.31 &’ + 289.56 = 0

» (15.33 — @) (19.98 — @*) = 18.39 x 0.91

This is the frequency equation which is quadratic in @”.

35.31 +(35.31)%> — 4 x 289.56
2 b

w2 =12.95 0, =3.6rad/s, ®2, =2236, ®,,=4.73radls

=

where ®,, and w,,, are the first and second natural frequencies respectively.



To draw the principal mode shapes,

A_ 1839 4 _ 1839
B 1533 - B 1533 -
At o’ =0, =1295 Ate* = w5, =22.36
4 1839 4, 1839
B, 1533-1295 B, 1533-2236
4; 1839 4, 1839
B, 2.38 B, -7.03
ie. A,=1839,B,=2.38, ie. 4,=1839,B,=-7.03.

Principal modes



EXAMPLE 6.25

Determine the equation of motion of the double pendulum as shown in
Fig. p-6.25(a) for small oscillation by using Lagrange’s method.

(a) (b)

Fig. p-6.25 Double pendulum
Solution The KE of the system is KE = % m,vf + % mzvg
Vf = (Llol)2
where 2= (L16,)* + (1,0)* + 2L,L, 8,6 , cos (8, - 6,)
Which are velocities of the masses m, and m, respectively.
PE =mgL, (1 —cos 6,) + myg[L, (1 —cos 6,) + L, (1 —cos 6,)

Lagrange’s equation is

4 AKE) APE) IKE)

dt og, o, g,

d OKE) 4 . .
& 3 (mL} @, +my[L2@,+L,L, 6, cos (6 6)])

i

=mL} 0, +my|L20,+LL,0,cos(6,—6,)+L,L,0, %(m2 cos (6, - 6,))
= mLfBl +”T2Lfé| +m2L|L2é2
where sin 6 = 6, cos (0, — 6,) = 1 and % [cos (6, — 6,)] = 0 since O is small.
J(KE) 5 A(PE)
2. 90

! 1

Then the first equation of motion is given by

Also

=m gL, sin 6, — m,gL, sin 6,

(m|+m2)Ll é|+m|Lzéz+(ml+m2)g9,:O

d9K8) 4
dt 96, dt

Similarly, [myL2 @5+ myLiL, 6, cos (6, — 6))]

= mng é2 £ mleLz 0 1

J(KE) _

0
26,

d(PE)
a0,
And so the second equation of motion becomes
L,6,+g6,+L, 6,

= m,gL, sin 6,



EXAMPLE 7.1

Determine the natural frequencies of the three-degree-freedom spring-mass
(linear) system by using Newton’s method as shown in Fig. p-7.1.

Solution Now at any instant give vertical displacement ‘x,’to the mass ‘4m’ “x,’ to
the mass ‘2m’and ‘x;’to the mass ‘m’ as shown in Fig. p-7.1(a). The FBD is as shown
in Fig. p-7.1(b) assuming that x, > x, > x;

Then the two lower springs are in compression and the top spring is in tension for the
direction of x, as shown in Fig. p-7.1(b). Then the various spring forces acting are as
shown in FBD of Fig. p-7.1(b).

Now applying Newton’s second law of motion, £F = mx, the equations of motion
are

3k 3kx,

%’n W"ﬁ 4{1

k(x; = Xy)
2m 2m
X2 T
k k(X5 — X3)

.

(@) (b)

Multi-degree linear spring-mass system



dmx, = -3kx, —k (x; —x,) =0
2mx, =k (x; —x,) —k (x, —x3) =0, mx; =k (x, —x3) =0
dmx, + 3kx, + k (x;, —x,) =0
2mx, +k(xy —x) + k(xy—x3)=0
mxy +k(x;—x,)=0
Rearranging the above equations,
dmx, + 4kx; — kx,=0
2mx, + 2kxy— kx, — kx; =0 ...7.100
mxs + kxy—kx, =0
This is the differential equation of motion of the masses ‘m,’, ‘m,’and ‘m;’.

For solution of equations 7.100, we assume that the motion is periodic and is com-
posed of harmonic motions of various amplitudes and frequencies. Let one of these
components be,

x, =X, sin wt, ¥, = —&’X, sin ot
X :Xz Sin ) t, .’X.:z = —szz Sin wt
X3 =X;sin @1, x3= —a)2X3 sin @t
Substituting these values in equations 7.100
sin wt# 0
(4k — dma®) X, —kX, =0
Qk—2ma®) X, —kX,—kX; =0 ...7.101
(k—ma*) X; —kX, =0
To find the natural frequency equation, the determinant of the coefficient of x,, x,,
and x; must be equated to zero.

X1 X2 X3

4 (k— ma®) —k , 0 _0
_k 2(k—ma’) —k
0 —k (k— mao’)

Expand the determinant to get the frequency equations:
4(k—maP) 2 (k- mo?) (k— ma?) — K+ kL& (k—ma?) 01+ 0=0
(k—ma?) {8 (k—ma*)* —4k*] - ¥} =0
(k — ma?) 8K + 8m’w* — 16 kma?® — 5K*] =0
(k — ma?) | 8m*w* — 16kma® - 3K*] =0
(k — ma?) = 0, 8m’w* — 16kma” —3k* =0

k /k
3 3 _
k=mw =y 0= mrad/s

 16km +\(16km)* — 4(8m%) GK)  16km = \256K°m® — 96K m’
N 2 x 8m? 16m>

@,




2 16km \256K°m® — 96K°m*  16km + 12.65km _ k  12.65 k
ab o i

16m> 16m> %o la W
k k
@, =0.2094 - W, =1.79 ;
B \/? B \/?
®, =0.4576 \, rad/s o, = 1.338 |, rad/s

Hence, the natural frequencies are

o,; =0.46 \/% rad/s, o,, = \j% rad/s, @,;=1.34 \/g rad/s.

EXAMPLE 7.2

Determine the natural frequencies of the three-degree-freedom spring-mass
(linear) system by using Newton’s method as shown in Fig. p-7.2(a).

3kx, 2k(X; = X,) k(x; = X3)
<« m [« > 2m [« > 3m
(b)

Fig. p-7.2 Multi-degree linear spring-mass system

Solution Now at any instant give linear displacement ‘x,’ to the mass ‘m’ ‘x,’ to the
mass ‘2m’and ‘x;’ to the mass ‘3m’ as shown in Fig. p-7.2(a). The FBD is as shown
in Fig. p-7.2(b) assuming that x; > x, > x;.

Then the other two springs (24 and &) are in compression and the top spring is in ten-
sion for the direction of x; as shown in Fig. p-7.2(b).Then the various spring forces
acting are as shown in FBD of Fig. p-7.2(b).

Now applying Newton’s second law of motion, ZF = mx, the equations of motion
are

mx, + 3kx; +2k (x; —x,) =0
2mx, + 2k (x, —x)) + k (xy —x3) =0 3mx; + k (x3—x,) =0
Rearranging the above equations,
mx,+ Skx; —2kx, =0
2mxy+ 3kx, — 2kx; — kx3 =0 d 102
3mxy+ kxy—kx, =0
This is the differential equation of motion of the masses ‘m,’, ‘m,’and ‘m5’.

For solutions of equations 7.102, we assume that the motion is periodic and is com-
posed of harmonic motions of various amplitudes and frequencies.



Let one of these components be,

x;, =X, sin ot, %,=-w’X, sin ot
x, =X, sin 0t, X,=—a@’X, sin ot
X3 =X sin @t, ¥;=—w’X; sin 0t

Substituting these values in equations 7.102
—ma*X, + 5kX, — 2kX, =0 "+ sinwt#0
—2ma’X, + 3kX, — 2kX, — kX; =0
—3ma’X; + kX — kX, =0

(5k—ma*) X, - 2kX, =0
Bk —2ma*) X, — 2kX, — kX; =0 ..7.103
(k—3ma’) Xy — kX, =0

To find the natural frequency equation, the determinant of the coefficients of x,, x,
and x; must be equated to zero.

X X, X3
(5k — ma?) —2k 0 ~0
2 —k
2k Bk -2mw")
0 & (k—3ma?)

Expand the determinant to get the frequency equation

(5k — ma?) 3k — 2 ma?) (k — 3ma?) — k2] + 2kl — 2k (k- 3ma?)] =0

(5k — ma?) 2K — 9 mka® — 2mka® + 6m*w*] + 2k[- 2k* + 6mka’] =0
3
w6—6.83%w4+7.5ﬁw2—k—=0

m? m>

By solving the above equation, the natural frequencies are

o,; =0.396 \/% rad/s, o,, = 1.084 \/% rad/s, ®,; = 2.35 \lg rad/s.

EXAMPLE 7.3

Determine the natural frequencies of the three-rotor (semi-definite) system by
using Newton’s method as shown in Fig. p-7.3.

Solution Now at any instant give angular displacement ‘6, ’to the disc*J,’ “6,’ to the
disc ‘J,’and ‘65’ to the disc ‘J5’ as shown in Fig. p-7.3(a). The FBD is as shown in Fig.
p-7.3(b) assuming that 6, > 6, > 6;.

Now applying Newton’s second law of motion, JO =—XT, the equations of motion
are

Ji él =—k(6, -6,
S0, =k (6, - 6,) =k, (6, - 65)
J30 3=~k (6, 65)



Fig. p-7.3 Multi-degree torsional system

J10 1+ Ky (6, 6,) =0
J2é2+kt1 (62— 91)+kt2(92_63) :0 7104
J30 3+ ki (6, 6,) =0
This is the differential equation of motion of the discs <J,’, ‘J,’and “J;’.

For solutions of equations 7.104, we assume that the motion is periodic and is com-

posed of harmonic motions of various amplitudes and frequencies. Let one of these
components be

6, = asin wt, 0,=-w’asin ot
0, = bsin wt, 0,=—wb sin w1
0, =csinwt, 0,=-w’csin ot
Substituting these values in equations 7.104,
(ky —J 0" a—k,b=0
(ky + kyy — 3J,0%) b — 2k, a — kpe = 0
(ky —J3@%) ¢ — kb =0

To find the natural frequency equation, the determinant of the coefficient of @, b and
¢ must be equated to zero.

01 92 63
(ktl _lez) _ktl 0 =
! (ky + kpp— szz) -2
0 —ki (ki — J30)




(ky = J,0°) [(ey + kg — Jy0) (k= J30°) — k"] + kg [= Ky (ki — J306%) = 0] + 0 =0
By simplying the above equation, we get

ki kn ko kol [ktlkt2(Jl+J2+J3)

J1+J2 J2+73 @ ‘,1‘]2‘]3

o [w4_{ﬁ+ktl+kt2+@} w2+{ktlkt2(Jl+J2+J3)}:O
Ji Js J3 S/

wf = 0 (. semidefinite system).

0)6

@ =0

ky kathky, kp } . \j{ ky  kytk, N ki }2_ knko(Jy +Jp +J3)

=+ + + +

By solving the above equation, the natural frequencies are

k. k.,
=0 rad/s, ®,, \/J: rad/s, ;= 1.74 \/J: rad/s.
2 3

Find the influence coefficients of the spring-mass system as shown in Fig. p-7.4.

EXAMPLE 7.4

Fig. p-7.4 Spring-mass system

Solution Apply unit load at position ‘1’of Fig. p-7.4.

: - 1 . .
The influence coefficient, a;; = 3k (deflection at 1 due to unit load at 1)

a1 = 3k (deflection at 2 due to unit load at 1), a,; = k (deflection at 3 due to unit
load at 1)
By Maxwell’s reciprocal theorem, a; = a;;,
1
] By A
1

e R R
Apply unit load at position ‘2’ of Fig. p-7.4.

Neglecting the mass at 1, springs ‘3%’ and ‘4’ are in series.



1 1 1 5 :
where ke 3k T2 9% = ex (deflection at 2 due to load at 2)
a3y = el (deflection at 3 due to load at 2),
2 6k

By Maxwell’s reciprocal theorem, a3, = a,; = %
Apply unit load at position ‘3’ of Fig. p-7.4.
Neglecting the masses at points ‘1’ and ‘2°, springs ‘34°, 2k’ and ‘A’ are in series

1 1 1 1 11

kq 3k 26k 6k
1
- A
eq
11 : .
33 = cr (deflection at 3 due to unit load at 3).
EXAMPLE 7.5

Find the influence coefficient of the system as shown in Fig. p-7.5(a) and thus
find the values of natural frequencies.

Solution  Apply unit load at the position 1.

Considering mass m, = m in Fig. p-7.5(b), Tsin 6 =1, T cos 0 = 3mg,

tan0=%

.
3mg

For small angles of ‘@’ tan 0 = sin 0 =

Fig. p-7.5 System of multiple masses
an

From the geometry of Fig. p-7.5(b), sin 0 = ]
a, =1Isin 6
1

3mg 21 31 12 13

ap



Apply unit load at the position 2.
Considering mass m, =m, XV =0and ZH =0

Tsin@ =1,Tcos 0,=2mg

1
tan 6, = T
) 1
For small angles of 6, tan 8, = sin 8, = _ng

From the geometry of Fig. p-7.5(c), a,, = a;; + / sin 6,

1 1 51

a22=%+m,a22=%=a3z=a23

Apply unit load at the position 3.
Considering mass m; =m, 2V =0 and XH =0

Tsin 6, =1, Tcos 6,=mg .. tan Gzzmig
For small angles of 0,, tan 8, = sin 6, = mig
From the geometry of Fig. p-7.5(d),
51 1 11

a33=a22+151n92,a33=

6mg Mg 6mg

The equation of motion using influence coefficient in matrix form is as follows:

X1 ma;,, Myap msa;3]rx
X | = @?|may Maay msax||x;
X3 miay, Myds; M3dszs||X;3
' ml ml ml !
. 3mg 3mg 3mg
ool om sml smi
2= 3 6m 6mg
%y mg g g
ml Sml 11ml
L 3mg bmg 6mgI

To find the first principal mode and first natural frequency,

let Xi == % = 1
1 2[2 2 27[1] [6 1
[1 -2l s s [1 —[12—%2
1l 12 5 1llil L8 3

Bz :OA2+Bz+OC2
C,=04,+0B,+ C,

This can be written in matrix form as follows:

el

2 2 2
5
11

H



Al 10 229 -3.927[4
By =10 1 0 B, | (Sweeping matrix)
o lo o 1 l]c

To obtain the second natural frequency, the sweeping matrix is combined with the
matrix of the first principal mode.

X2 2 2710 229 -3.9271[*i la
X2=12 5 5||0 1 0 X2 6o
3 12 5 11flo o 1 o] %8
For first iteration, letx; = 1,x, =1, x3= 1.
—2.58 -5.841[1 —8.42 o[ -1
[ ] 16— [0 0.42 —2.84] I %ﬁ 24| =221 —0.29]
0 042 3.16 &13.58 & 1o
For second iteration, let x, = -1, x, =0.29, x;=0.43
-1 -2.58 -5.841[ -1 -1.76
0.29‘ 12)2 0 042 2.84] 0.29] l6a) -1 34] L 766 le [ 0. 76‘
0.43 0 042 31611043 1.24 & 0.70
For third iteration, x, = -1, x, = —-0.76, x; = 0.70
-1 . 0 -258 -5.84
-0.76 | = & 0 042 -2.84 O 76
0.70 0 042 3.16110.70
For second iteration, x; = 1, x, =2, x3=
1 2 2 2
3 3 75
For third iteration, x; = =225, %3=375
2 2 2
[m] ”m] R
3.75 3.75 54 0l % (33
For fourth iteration, x; = 1, x,=2.29, x,=3.89
2 2 2 14.36
[2 29] [ ”2 29] 32.90 _ 2610)2 [2 29]
3.89 3.89 56.24 & 139
For fifth iteration, x, = 1, x, =2.29, x;=3.92
2 2 2 »[14.42 o[ 1
[2 29] l?[ ”2 29] Io7 133,04 ““gﬂ[z.w‘
3.92 3.92 56.57 £ 139




Since the assumed values is approximately equal to the obtained values, the first
principal modes will be, 4, = 1, B, =2.29, C, = 3.92.

The first natural frequency is
14 210° , 6 g . B \/E
Gz l,or ), = 1492 77 - @, = 0.65 ] rad/s.
To obtain the second principal modes, the orthogonality principle is used.
 mA A, + myB By + myC,C,=0,0rm (1) 4, + m (2.29) B, + m (3.92) C, =
Ay=-229,B,=-392C,,4,=04,-2.29B, -3.92C,

, [-2.13 -1
=% —2.31]—2‘163"“’2—[—1.08]
g 1189 g 0.89

For fourth iteration, x; = -1, x, = -1.08, x; = 0.89

-1 , [0 —258 —5841[ -1 224 2
[-1.08]’6&[0 042 -284 [—1.08] 16 298] 246” ~1.24
0.89 g o 042 316J)l089 g 1236 g | 0.98
For fifth iteration, x, = -1, x, = —1.24, x; = 0.98
-1 , [0 —-258 -584 2.52 2 -1
[-1.24] - lg — [0 0.42 —2.84] [ 1 24] 16[ 3. 30] 2 562’ [ 1.31]
0.98 g o 042 3161Jl0.98 2.58 & 11.02
For sixth iteration, x; = -1, x, = —1.31, x;=1.02
-1 0 -258 -5.84 ~2.58
[1.31] 16“’2 0 042 2.84” 131] ~3.45 2568”"2[ 134]
1.02 € lo 042 3161l 1.02 2.67 € 1 1.04
For seventh iteration, x; = — —1.34, x5 =
-1 0 -258 —5.84 ~2.62 > -1
[—1.34] e 16— 0 042 -2. 84] [ 1. 34] 16— 3, 52] - 2°662’“’ [—1.34]
1.04 € lo 042 3161l 1.04 2.72 £ |1.04

Since the assumed values and the obtained values are approximately equal, the sec-
ond principal modes are given by 4, =-1, B, =-1.34, C, = 1.04

. second natural frequency is given by

2.62l0° _ 6g B \/E
g 1 or @5, = 260l P 1.51 ] rad/s

To obtain the third natural frequency and third principal modes, the orthogonality
principle should be used.

m1A2A3 + m2B2B3 + m3C2C3 == 0
mlA 1A3 + szlB3 + m3C1C3 = O




Using the values,
m(—1)A;+m (1.34) By + m (1.04) C; =0,
—A;—134B;+1.04Cy,=0
m(1) A3+ m (229) B, +m (3.92) C5=
—A3+229B;+3.92C;=0
Adding equations 7.105 and 7.106, we get
0.95B;+4.96C;=0
By =-5.22C;
Substituting the value of B5 in Eq. 7.105, we get
-A5—-134(-5.22) C3+1.04C;=0
A5 =8.03 G

Writing the equation in terms of C; from equations 7.107 and 7.108,

A3 = 0A3 + 0B3 + 803 C3
By =045+ 0B;—5.22 C,
C, =04, + 0B, + C,

The sweeping matrix will become

431 ro o 803 1[4
By1=10 0 -522||8;
¢ L0 0 1 Cs

...7.105

... 7.106

.. 1.107

...7.108

When this sweeping matrix is combined with the matrix equation of the second mode,

we get the matrix of third mode.

X1 TP 0 —258 -5.841[0 0 8.031[*1
Xol=—|(0 042 -284(|0 0 -522]||*
X3

x5 % o 042 316llo 0 1

x2 :6— —503
X 0 0.97

1] 1@2'0 0 763”

For first iteration, x, = 1, x, =

1 0 0 7.63 7.63
1]—’6— 503” ] 16—[ 503] 7663[‘"
1 0 0 0.97 0.97 5
For second iteration, x; = 1, x, =-0.66, x; = 0.13

1 7 7.63 0.99
—0.66] 16— 0 o 503” 066] 065] 0969”"
0.13 0 0 0971.10.13 0.13 g

|




Since the assumed value is approximately equal to the obtained value, the third prin-
cipal modes will be, 45, =1, B; =-0.66, C;=0.13

The third natural frequency will be 0.99/w*/6g = 1, w’;, = 6g/0.991,

s, = 2.46 \/g rad/s.

EXAMPLE 7.6

Determine the influence coefficient of the triple pendulum of lengths ‘/,°,’/,’ and
‘l;> and masses ‘m,’, ‘m,’ and ‘m,’ as shown in Fig. p-7.6(a).

)
1
T UnitLoad = F

h
T cos 0,
m) =
a1

Iy (my + my + my)g

(a) (b) (c)

Fig. p-7.6 Triple pendulum

Solution  Apply unit load to mass ‘m,’.
Considering mass ‘m,’,
2V=0and ZH=0
T'sin 6, =1 ...7.109
T cos 0, = (m;+ m,+ m3)g ..7.110

1
(m+ my+ my)g

Divide Eq. 7.109 by Eq. 7.110, tan 6, =

For small angles of 6,, tan 6, = sin 0,

a
From the geometry of Fig. p-7.6(b), sin 0, = %, a;, =1/ sin 6,
1
/)
The influence coefficient, a,, =
o (my+my+ my)g
: Iy Iy

From the geometry of Fig. p-7.6(c), a,; = , A3 =

(my + my+m;)g (my + my+ ms)g

By Maxwell’s reciprocal theorem, a,; = a;and a5, = a3



Applying unit load to mass ‘m,’, neglecting mass ‘m,’,

T T cos

+ 1, 2N
Tsin 0,
-
(my + my)
m;,
U

< s > nit load = F

Fig. p-7.6 Contd.

Considering mass ‘m,’, Fig. p-7.6(d), £V and XH =0

T'sin 6, =1
T cos 0, = (m, + my)g
1
tan 0, =
2 (my+my)g
For small angles of 6,, tan 6, = sin 0,
l
From the geometry of Fig. p-7.6(e), sin 6, = lﬁ’ x=1l,sin 6, x= m
2 27 M3
But influence coefficient,
Ay =atX,ay),= d e
2 TRy my+my)g  (my+ my)g
I h

From the geometry of the figure, a3, = a5, = P —— + ———

Applying unit load at the position ‘3’, neglecting masses ‘m;’ and ‘m,’.
Consider mass m; Fig. p-7.6(f) ZV =0 and XH = 0

Tsin 6; =1
Tcos 0; = m.g
tan 0, 2@

For small angle of 6, tan 0;= sin 6,
From the geometry of Fig. p-7.6(g)

I
T msg

. X :
sin 0, = x=1I;sin 05, x
3

But Q33 =y t X



T T Cos 0,
|
F=1
m; g
Unit load = F
[ €——833—
x>
) (9)
Fig. p-7.6 Contd.
ll l2 13

as; + + !
(my+my+my)g  (my+msy)g M3&

EXAMPLE 7.7

A simply supported beam of length ¢/’ has three equal masses attached to it at
equal distances as shown in Fig. p-7.7(a). Determine the influence coefficient.

< / > lw1 lwz lws
7N\ N\ 7o A B
A/ —F 7% 1 2 3 3
< / >
(a) (b)

Fig. p-7.7 Simply supported beam

Note: Deflection at any point ‘x’ is given by a simply supported beam.
wax(P — a* — x%)
Ve ™ GEIl
where w = Load applied at a distance ‘a’ from the end 4 or B
x = Distance to the point from end B or A, where the deflection is actu-
ally required

forx<(1-a)

w, w,
«—a—>r«—X > «—a—> «—X—>
A 4 = _ B A v _ B
~ A b A\
‘ 1 2 3 4 4 1 2 3 1
Y11 Vor




A
-
Y
A
—~
Y

Fig. p-7.7 Contd.
E = Young’s modulus of the beam material and / = Moment of inertia
of the beam
Applying unit load at the point 1, Fig. p-7.7(c).
l 3/

Solution Influence coefficient, a = 1757 x<1l-a
L3, (L) (3
3/ ] d 4 4 (4 l 4
i —<]--an =
e g =g ey GEIl
31 ’ 9P
AU TARETA 3 3
. th dition i satistied, _16 16 16/ 3Fx6 31
. the condition is satisfied, a, CEl 16 % 16 < 6EI _ 256E]
. " . - l 21
Deflection at the position ‘1’ due to unit load at position ‘1,’a:Z’x:Z
" s L) 2 B
Condition x</—a,1i.e. 4 < 1—4 ' 2 < 4 (true)
2 2
QR UL e )
B 4 4\2 \4 4/ 16 16 16
G " 6EI - 6EI

_2x11P 1 _3.67P
“21 7 956EI 6  256EI

(deflection at 2 due to unit load at 1)

Lol 1
4’7 4
" o defi DLt
Condition x</—a, 1.e.4s 1—4 =>4S 4 (True)
2 2
P
_4 4 4 4)) 14 I
431 6EI 6  256EI

_2.33P
4317 256E1

(deflection at 3 due to unit load at 1)

3.67° 2338

By Maxwell’s reciprocal theorem, a,; = a;, = 256E] W1~ 93 5s¢py



Applying unit load at the point ‘2’, influence coefficient a,,,a = %, %, condition
x<(l-a),
. 2 2) 2_2u
i.e. <\I- 1 4 = 1 (True)
2[ 21 I 2 21 ]
4l(1612 AP —4P)  533pP
i 6Ell 6x256EI  256EI
(deflection at 2 due to unit load at 2)
2/ . :
=", x=— <(l- — g —
a="x=y condition x <(/ —a), i.e. 1S (True)
2 -]
474" 4 21[1612 Ar-1r1 3678
932 = 6EIl 6 x 256EI  256EI
(deflection at 3 due to load at 2)
Applying unit load at point 3, a= %, xX= %!
F=1
—a—>
A Y B

Fig. p-7.7(g) Contd.

Condiion  x<(I—a), . 2<(, i)

4 4

31 3l

e

152 (True)

2 2
ﬁ " %(12 i} (é) B (%) ) 3P
SOy = CEIl = 256E] (deflection at 3 due to unit load at 3)
3.67°

By Maxwell’s reciprocal theorem, a5, = a,; = 356El

EXAMPLE 7.8

Determine the influence coefficient of a dynamic system consisting of three
equal masses attached to a taut string as shown in Fig. p-7.8(a).

!
33%
:
i

€
€
€

ZZ




y 31 y/

Fig. p-7.8 Dynamic system

Solution Applying unit load at the point 1, let ‘7" be the tension in the string.
For small angles of ‘a’and ‘f’, tan o = sin ¢, tan 3 = sin 3
Considering the mass ‘m,’ in Fig. 7.8(b) ZH =0
Tcoso=Tcosf3
Considering vertical movement of the mass m,_
V=0
Tsino+ Tsin f=1

ap

a
But from the geometry of Fig. 7.8(c), sino = T“’ sin 3= 3/

a9 3/ . : s
T T+§ = 1,a11=ﬁ(deﬂectlon at 1 due to unit load at the point ‘1°)

Comparing similar triangles,
2 2.3 B
An=39% 3% 3y %" 5
Comparing similar triangles,

app a3 1 / : ;

(deflection at 2 due to unit load at 1)

(deflection at 1 due to unit load at

By Maxwell’s reciprocal theorem, a,, = a,, = ﬁ,

2)
a3 =ay;3= %, (deflection at 1 due to unit load at 3) applying unit load at the point 2.

Considering the vertical movement of mass ‘m,’ in Fig. p-7.8(d)

2V=0,Tsin0@+ Tsin =1
From the geometry of Fig. p-7.8(e),

-
sin @ = 2]

[ /
T(ﬁ) * (5) A= 1



Fig. p-7.8 Contd.
2 )

“RTIT T
Comparing the similar triangles,
Ry B3 @

27" ] %2, 2anT %, (deflection at 3 due to unit load at 2)

By Maxwell’s reciprocal theorem,

Ay3 = a3 = % (deflection at 2 due to unit load at 2) ki
Applying unit load point ‘3’ by symmetry, a;; = a;; = :—]I, m, %
Note: For the system shown in Fig. p-7.8.(f) Kk,

m X, is the inertia force of the mass m,

m,X, is the inertia force of the mass m, ™2 ] x,

m-x is the inertia force of the mass m, k,

Let x, =Asin Wt, x,=Bsinwt, x;3=Csin ®t L
X, =—0’,, X,=—Ba’sin 0t, x;=—w’x, ~ 1n
<. the inertia forces will be —m,@’x,, —m,w*x, and —m;w’x, 0

For unit load, influence coefficient = a i Fig. p-7-8  Condl
For inertia force, influence coefficient = (inertia force ) a;;
For a three-degree-freedom system shown in Fig. p-7.8.(f),
there are nine influence coefficients:

ayy, dpy, a3 for the mass m  a,,, a,,, a,; for the mass m, ay, as,, a;; for the mass
m
3.

. total deflection of masses ‘m,’, ‘m,’ and ‘m;’ is given by
ay=aytaptag
ay = ay; + ay + a3 ) For unit force
az =az +taztas;



Considering inertia forces, displacements are given by
=Xy =aymx;tapmyx,ta;mx; Cox = a“mla)le + alzmz(uzx2 + al3m3(02x3
C oy — 2 2 2

. a = 2 2 2
< X3 = Ay M @O°X; t az;myWxy t+ azzms0xs

This can be written in matrix form as

2
X a“mla)le alzmza)zx2 a;3m30x;
Koy | =
X
3 2 2
a31m1(0 xl a32m2w x2 a33m3w2)C3
or
Xy Ay MmXy appmyx, ap3msx; |
2
X2 | = @ [ Q21 X1 GyympXy ax3maxs| =|[Xa|
X3 A3 \MX) az3MaX, Az3M3Xs %3

EXAMPLE 7.9

Calculate the natural frequencies of the system as shown in Fig. p-7.9 by using
matrix method.

3k 1 k 2 k 3
4m MWWWA— 2m P WWWW— m
ANNNNANNNNNN NNN\N NNNNNANNANNANNNANNNAN NN N\

Fig. p-7.9 Spring-mass system

To calculate influence coefficient, applying unit load to the position ‘1’
Q11 = ﬁz @21~ 431~ 812 = 443
Applying unit load at the position ‘2’°, neglect mass at ‘1°,
S T A S
22 3k k 3k 32 23
Applying unit load at the position 3, neglecting masses at ‘2’ and ‘3’,
1 1 1

7 .
a33=§+;+;:§ glvenm1:4m,m2:2m9m3:m

The equation of motion for a three-degree-freedom system in matrix form is written
as follows:

Xy may mya;, miag;3][x
Xp| = @ |May Maay maar||x,
X3 [Ma3; Myasz, m3dssz) | X3
[4m 2m  m ]
X1 :k ;:1 :’l; X171 [*1 - 4 2 11"
X2 =(O23—rZ ﬁ § x2, X :? 4 8 4||*2
X3 X3] 1X3 4 8 T71L1%s
4m 8m  Tm
b3k 3k 3k




Assuming x; = 1, x, = 1, x; = 1 for the first iteration,
1] 4 2 11[1 4+2+1
1=m3(;;2484]1=m3(;€)24+8+4 I [ ]
1. 4 8 7111 4+8+7
1] o[ 1
1= 7”3“]‘:’ 2.29]
[ 1 2.71
For second iteration, x; = =229, %5=2.71
1 1 »[11.29
[2 29] s 4 8 4] 2.29] =m3—‘;€’ 33.16] “239]{“’2[2 29]
2.71 4 8 711271 41.29 3.66
For third iteration, x, = =2.94, x; =3.66
1 ] 4 2 1 » [13.54
229 = "‘3‘]‘(’2 4 8 4] ”23916“’2[2 29 ”’3‘]‘: 42.16
13.66. 4 8 7 3.66 53.14
1
229 = 13:54ma” 54’"“’2 [3 11]
13.66. 3.92
For fourth iteration, x, = 1, x, = 3.11, x; = 3.92
1 »[4 2 1 1 14.14 o[ 1
[3.11 =m3—‘]‘: 4 8 4] 3.11] ”;—‘;C’ 44.56 14‘13# 3.15]
3.92 4 8 7113.92 56.32 3.98
For fifth iteration, x; = 1, x, = 3.15, x; = 3.98
1 >[4 2 1 1 14.28 o[ 1
[3.15 =”’3—‘;€’ 4 8 4] 3.15] =m3—°,‘{’ 45.12 14'23% 3.16
3.98 4 8 7113.98 57.06 4
For sixth iteration, x, = =3.16, x5 =
1 14.32 o[ 1
s16] -4 5 4 316 -7 (4528 1433% 3.16
4 4 8 7 57.28 4
Since the assumed value is very close to the obtained value
1432 ma®
3k
'. wf" =0.21 % s, =046 \[% rad/s (first natural frequency)
The first principal modes are givenby 4, =1, B, =3.16 and C; =4.0



To obtain the second principal mode, the orthogonality principle is used,

1.&. mA,A, + myB,B, + m;C,C, =0
4m(1)4, +2m(3.16) + B, + m(4)C, =0

or 44,+ 6.32B,+4C,=0,4,=-1.58B,— C, or4,=04,—1.58B,—-C,
B,=B,, B,=04,+B,+0C,, C,=C,, C,=04,+0B,+C,

These can be written in matrix form as

41 10 —158 -11[42
By[=10 1 0 ||B,
c, L0 0 1I{cC,

This matrix, if combined with the matrix of first mode, is called sweeping matrix.

X1 ] . 4 2 1110 —-1.58 -171[*1
X2 | = 7 4 8 4 O 1 0 X
[ X3 ) 4 8 7 0 111l%s
Xy ma? 0 —-432 -371[*%
X | = 7 0 1.68 0 X
| X3 ) [0 168 3 /L%
Starting the first iteration, let the second principal modes be
1 432 -3 -7.32 1
[1‘="§‘ZZ 1.68 ” ] 168] 73;{“’023]
1.68 1.68 0.64
For second iteration, x, = -1, x,=0.23, x;=0.64
-432 -3 -2.91
[023] ETS 1.68 ”023 0.39 ] zgész[o 13]
0.64 1.68 0.64 2.31 0.79
For third iteration, x, = -1, x,=0.13, x3;=0.79
-1 —-4.32 —3 -2.93
[013 ’”3‘]‘:2 1.68 013 022] 293—](“’ 008]
0.79 1.68 0.79 2.59 0.88
For fourth iteration, x, = -1, x,=0.08, x;=0.88
—1 -432 -3 2.93 1
[008 ”;‘]‘:2 1.68 “008 013] 2927](“’ 004]
0.88 1.68 0.88 2.77 0.93
For fifth iteration, x, = -1, x,=0.04, x;=0.93
432 -3 2.96
[004] 1.68 ”0 04] 007] el 9§k‘° 002]
0.93 1.68 0.93 2.86 0.97




For sixth iteration, x, = -1, x,=0.02, x;=0.97

-4.32 —3
002 3k 1.68 002 7 003 001
0.97 1.68 0.97 2.94 0.98
For seventh iteration, x; = -1, =0.01, x;=0.98
-432 -3 2.98 1
lom] 1.68 ”001] 002] 29§k‘” 001]
0.98 1.68 0.98 2.96 0.99
Since the values of x;__; x,_
Let for eighth iteration, x, = -1, x,=0,
-1 ma)2 -4.32 —3 _ 3mo -1
01|= W 1.68 Y 0
1 1.68 1

Since the obtained modes is equal to the assumed modes,

3may’ k k
= ?k =1, a)ﬁ,, =y iy = \/;rad/s. (second natural frequency)

To obtain third principal modes, the orthogonality principle is
mA,A5+ myB,B; + m;C,Cy3=0
mA A5+ myBB; + m;C,C5=0
But 4,=1, B,=3.16, C,=4, A2 -1, B,=0, C,=1
4m(—-1)A45 + 2m(0)B; + m(1)C; =
—445;+0B;+C3=0 L7111
4m(1)A4A; + 2m(3.16)B; + m(4)C5 =
445+ 6.32B,+4C;=0 .. 71.112

Solving equations 7.111 and 7.112 and adding, we get
-
632 B; +5C;, B;= 632 C;, B3;=-0.79C4
Or A3 = OA3 + OB3 + 025C3, B3 = OA3 + OB3 — O79C3, C3 = OA3 + OB3 + 1C3

Writing in matrix form,

431 10 0 0257[4
By|=(0 0 -0.79||Bs |} (sweeping matrix)
C;] L0 0 1 Cy

This matrix is combined with the matrix of the second mode.

X1 ] ma? 0 —432 -3 0 O 0.25
Xy =3k 1.68 O —O 79 x2
[ X3 ! 1.68

0 1.67

0
0
%) 0 0 0.41
_ma?* 0 0 —1.33] [xz]
3 [,



For first iteration, x, = 1.0, x,=1.0, x;=1.0

0 0 041 0.41
IR R e
1.67 1.67 4.07
For second iteration, x, = =-3.24, x;=4.07
1 0 0 0.41 1.67
[ 324] m;;;z 133” 324] 541] 04;kw2[ 324]
4.07 1.67 Il 4.07 6.80 4.07
Since the assumed amplitudes is equal to the obtained values,
1.67ma* 3 ko, ok
—5 L W=y o =180,

w,;, = 1.34 \/% rad/s (third natural frequency)

Third principal mode will be 4;=1, B;=-3.24, C;=4.07.

EXAMPLE 7.10

Determine the natural frequencies and principal modes of vibration for the 3-de-
gree-freedom system as shown in Fig. p-7.10 by using matrix iteration method.

Solution Determine the influence coefficient system shown in Fig. p-7.10.

We know that earlier.

'l 1 11

o 0, O 3k 3k 3k
[o:] =% @ Op3|= L 4 4
Y Oy Oy O 3k 3k 3k
1 4 7

3k 3k 3k

In the next step, write down the equation of motion using
influence coefficients.

Oy Xy + 0pmyxy, + 0 ymaxs +x; =0

Oy M X+ ObyliyXy + OysmsXy + X, =0
03 M X | + O3pMyXy + O33myXs + x3 =0 Fig. p-7.120 Three-degree
Substitute X, = —@’x;, ¥,=—@x,and ¥; = — @ x; freedom system
Xy = Omxy + QpMpxy + 03msXs
Xy = 01X T OhMyXy + Oh3MsXy

X3 = O3 m X + OzpMpXy + Oly3msxs



The above equation can be written in the matrix form as

X -
- =
X3 X3

Substitute the value of influence coefficients in the above equation.

oy my Oy OQy3ms
O my Oy O3
Oy m; O3ty Q333

fam 2m m !
X1 3% 3k Sk X1 »[4 2 17 (%
{xz}zwz 4m 8m 4m {xz}:m 4 8 4] {xz}
X3 3k 3k 3k X3 3k 4 8 7] lx

dm 8m Tm

L3k 3k 3k,

To start the iteration process, assume the configuration in the first mode as

x=1,x=2,%=3

), [4 2 17(1 ) (11 1
{xz}—%”[4 4]{2}—31%{32}—(11)’”—]{@{2.91}
X3 4 8 7113 41 3.72

Second iteration

oo ©O0

1 4 2 1 1 > 13.5 1
{2.91} Z—Q;Z;n 4 8 4] {2.91}=——m](:) {42.16}(13.5) —ml(:)z {3.12}
3.72 4 8 7113.72 53.32 3.95

Third iteration

1 - 4 2 1 1 i 14.19 i 1
3.12 TS 4 8 4](3.12 =T 44.76 =(14.19)T 3.15
3.95 4 8 711395 56.81 399

Fourth iteration

1 @’m
3.15 :7

3.99

o)

4 2 1 1 i 14.3 . 1
o 4143.15 = 45.16 =(l4.3)T 3.158
4 8 711399 57.13 3.99

The ratio obtained is very close to the initial value.

1 2 1 2
[3.15] - 143727 {3.158} orl‘%me= l, & =of =7,3 .
3.99 3.99 '

o, =0.458 \/% rad/s

1
The first principal mode is given by { 3.158 }
3.99




The second natural frequency and principal mode is found by using orthogonality
principle.

-1

The value is converging to : 0
1

w5 =%, a)2=\/£rad/s

—1
and the second principle mode is { 0 }
1

To get the third mode, use orthogonality principle.

and hence 3”31:)2 =1

m 4,45+ myB,By + myC,C5 =0
m1A1A3 + m2B1B3 + m3C1C3 = 0

Substitute 4, =1, 4,=—1, B,=3.158, B,=0,C,=4.0, C,= 1

4m (~1)45 + 2m(0)B; + m(1)C3 =0, —44,+ C3=0 .. Ay=——

+Cy
4m(1) 45 + 2m(1) By + m(d) C; = 0, 4m( 3 )+2(3 158) B, + 4C; = 0, 6.316
B3:—5C3
43 10 0 0257(4
Then B;=|0 0 —0.79]|{ B;
¢, Lo o 1l

When this is contained with the matrix equation for the second mode, it will yield

the third mode.
Xy 0 O 0.25 i 0 0 04217 (*
X 4 8 4 —O 79 2? 0 0 —-132]|¢{*2
X3 0 0 1.681]1\x3

4m(1)4, + 2m(3.158)B, + m(3.99)C, =0

X3 4 8 7

44,+ 6316 B,+3.99 C,=0
A2 =-1.58 Bz C2, B2 B2 and C2 Cz

The same can be written in matrix form as

4) 10 —158 —17(42
B, } =10 1 0 |¢B,
c,] Lo 0 1,




When this is combined with the matrix equation for first mode, it will converge to

second mode.
-1. 58 —1 il 0 -432 -31(*
4 8 4 =7 0 1.68 0 X
4 8 7 X3 0 1.68 31\%3

X1
X3
X3

For first iteration, assume x; = 1, x, = 1, x; = 1.

1 ,10 —432 —31(1 732
{1}—”’3—(2 0 168 0 {1}—”;‘2’ 168] 732k“’2{023}
1 o 168 31/l 4.68 0.64
For second iteration
-1 ,10 —432 —37( -1 _291
{o.z3}=";‘: 0 1.68 0‘{0.23}=m3“l‘:2{0.3864} 29;k“’2{013}
0.64 0 168 3.l0.64 231 0.8
For third iteration
-1 ,10 —432 —37( -1 2.48 1
{0.13}——”;2’ 0 1.68 01{0.13} ";(;;2{0218} 24§k“’ {oos}
0.8 0 168 31l064 2.14 0.86
For fourth iteration
1 ,[0 —432 —37( -1 2.92
{0.08}—"13—(;; 0 168 o]{o.os} ";‘]‘c’z{01344} 29§k“’2{004}
0.86 o 168 31lose 572 0.93

Assume the configuration in third mode as, x; = 1, x, =2, x; =3

0 0 0427( 1 5 ( 1.68 » (1.0
0 0 1.32”3.14}ﬂ{5.28}1'68—2“"{3.143}

Then first iteration

-1 ma’
3.14 :7

4.00 0 0 1.68]14.00 3k 6.72 3 4.0
1.0
Hence, the third principal mode |—3.143
4.0
: . ma® 3 k k
The third natural frequency is given by 1.68 3k =1, = “’g_—ms a5 — 1783 55

oy = 1336 \/% rad/s

Hence the natural frequencies are

=0.458 \l% rad/s, @, = \/% rad/s, w;=1.336 \/% rad/s

1 -1 1.0
The principal modes are {3.158}, { 0 } and {3.143}
3.99 1 4.0



