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Introduction: Phases of Compiler 

The compilation process is a sequence of various phases. Each phase takes input from its previous stage, has its own 

representation of source program, and feeds its output to the next phase of the compiler. Let us understand the phases of 

a compiler. 

 



 

Lexical Analysis 

The first phase of scanner works as a text scanner. This phase scans the source code as a stream of characters and 
converts it into meaningful lexemes. Lexical analyzer represents these lexemes in the form of tokens as: 

<token-name, attribute-value> 

Syntax Analysis 



The next phase is called the syntax analysis or parsing. It takes the token produced by lexical analysis as input and 
generates a parse tree (or syntax tree). In this phase, token arrangements are checked against the source code grammar, 
i.e. the parser checks if the expression made by the tokens is syntactically correct. 

Semantic Analysis 

Semantic analysis checks whether the parse tree constructed follows the rules of language. For example, assignment of 
values is between compatible data types, and adding string to an integer. Also, the semantic analyzer keeps track of 
identifiers, their types and expressions; whether identifiers are declared before use or not etc. The semantic analyzer 
produces an annotated syntax tree as an output. 

Intermediate Code Generation 

After semantic analysis the compiler generates an intermediate code of the source code for the target machine. It 
represents a program for some abstract machine. It is in between the high-level language and the machine language. This 
intermediate code should be generated in such a way that it makes it easier to be translated into the target machine code. 

Code Optimization 

The next phase does code optimization of the intermediate code. Optimization can be assumed as something that 
removes unnecessary code lines, and arranges the sequence of statements in order to speed up the program execution 
without wasting resources (CPU, memory). 

Code Generation 

In this phase, the code generator takes the optimized representation of the intermediate code and maps it to the target 
machine language. The code generator translates the intermediate code into a sequence of (generally) re-locatable 
machine code. Sequence of instructions of machine code performs the task as the intermediate code would do. 

Symbol Table 

It is a data-structure maintained throughout all the phases of a compiler. All the identifier's names along with their types 
are stored here. The symbol table makes it easier for the compiler to quickly search the identifier record and retrieve it. 
The symbol table is also used for scope management. 

Lexical analysis is the first phase of a compiler. It takes the modified source code from language preprocessors that are 
written in the form of sentences. The lexical analyzer breaks these syntaxes into a series of tokens, by removing any 
whitespace or comments in the source code. 

If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer works closely with the syntax 
analyzer. It reads character streams from the source code, checks for legal tokens, and passes the data to the syntax 
analyzer when it demands. 

 

Tokens 

Lexemes are said to be a sequence of characters (alphanumeric) in a token. There are some predefined rules for every 
lexeme to be identified as a valid token. These rules are defined by grammar rules, by means of a pattern. A pattern 
explains what can be a token, and these patterns are defined by means of regular expressions. 



In programming language, keywords, constants, identifiers, strings, numbers, operators and punctuations symbols can 
be considered as tokens. 

Deterministic Finite Automaton (DFA) 
In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is 

called Deterministic Automaton. As it has a finite number of states, the machine is called Deterministic Finite 

Machine or Deterministic Finite Automaton. 

Formal Definition of a DFA 

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabet. 

• δ is the transition function where δ: Q × ∑ → Q 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of a DFA 

A DFA is represented by digraphs called state diagram. 

• The vertices represent the states. 

• The arcs labeled with an input alphabet show the transitions. 

• The initial state is denoted by an empty single incoming arc. 

• The final state is indicated by double circles. 

Example 

Let a deterministic finite automaton be → 

• Q = {a, b, c}, 

• ∑ = {0, 1}, 

• q0 = {a}, 

• F = {c}, and 

Transition function δ as shown by the following table − 

Present State Next State for Input 0 Next State for Input 1 

a a b 

b c a 

c b c 



 

 

Non-deterministic Finite Automaton 
In NDFA, for a particular input symbol, the machine can move to any combination of the states in the machine. In other 

words, the exact state to which the machine moves cannot be determined. Hence, it is called Non-deterministic 

Automaton. As it has finite number of states, the machine is called Non-deterministic Finite Machine or Non-deterministic 

Finite Automaton. 

Formal Definition of an NDFA 

An NDFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabets. 

• δ is the transition function where δ: Q × ∑ → 2Q 

(Here the power set of Q (2Q) has been taken because in case of NDFA, from a state, transition can occur to any 
combination of Q states) 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of an NDFA: (same as DFA) 

An NDFA is represented by digraphs called state diagram. 

• The vertices represent the states. 

• The arcs labeled with an input alphabet show the transitions. 

• The initial state is denoted by an empty single incoming arc. 

• The final state is indicated by double circles. 

Example 

Let a non-deterministic finite automaton be → 

• Q = {a, b, c} 

• ∑ = {0, 1} 

• q0 = {a} 

• F = {c} 

The transition function δ as shown below − 



Present State Next State for Input 0 Next State for Input 1 

a a, b b 

b c a, c 

c b, c c 

Its graphical representation would be as follows – 

 

 

Regular Grammar: 

A grammar is regular if it has rules of form A -> a or A -> aB or A -> ɛ where ɛ is a special symbol called 

NULL. 

Type-3 grammars or regular grammar generate regular languages. Type-3 grammars must have a single non-terminal on 
the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-
terminal. 

The productions must be in the form X → a or X → aY 

where X, Y ∈ N (Non terminal) 

and a ∈ T (Terminal) 

The rule S → ε is allowed if S does not appear on the right side of any rule. 

Example 

X → ε  

X → a | aY 

Y → b  

 

 

Regular Expressions: 
Regular Expressions are used to denote regular languages. An expression is regular if: 

• ɸ is a regular expression for regular language ɸ. 

• ɛ is a regular expression for regular language {ɛ}. 

• If a ∈ Σ (Σ represents the input alphabet), a is regular expression with language {a}. 

• If a and b are regular expression, a + b is also a regular expression with language {a,b}. 

• If a and b are regular expression, ab (concatenation of a and b) is also regular. 

• If a is regular expression, a* (0 or more times a) is also regular. 

 

http://quiz.geeksforgeeks.org/toc-finite-automata-introduction/


Regular Languages : A language is regular if it can be expressed in terms of regular expression. 

  

Design of a LA Generator: 

Two approaches:  

NFA-based 

 DFA-based 

The Lex compiler is implemented using the second approach. 

Generated LA 

 

A Lex program is turned into a transition table and actions, which are used by a finite-automaton simulator 

Syntax Analysis 

Syntax analysis or parsing is the second phase of a compiler. In this chapter, we shall learn the basic concepts used in 
the construction of a parser. 

We have seen that a lexical analyzer can identify tokens with the help of regular expressions and pattern rules. But a 
lexical analyzer cannot check the syntax of a given sentence due to the limitations of the regular expressions. Regular 
expressions cannot check balancing tokens, such as parenthesis. Therefore, this phase uses context-free grammar 
(CFG), which is recognized by push-down automata. 

CFG, on the other hand, is a superset of Regular Grammar, as depicted below: 

 

It implies that every Regular Grammar is also context-free, but there exists some problems, which are beyond the scope 
of Regular Grammar. CFG is a helpful tool in describing the syntax of programming languages. 



 

Context-Free Grammar 

n this section, we will first see the definition of context-free grammar and introduce terminologies used in parsing 
technology. 

A context-free grammar has four components: 

• A set of non-terminals (V). Non-terminals are syntactic variables that denote sets of strings. The non-terminals 
define sets of strings that help define the language generated by the grammar. 

• A set of tokens, known as terminal symbols (Σ). Terminals are the basic symbols from which strings are formed. 

• A set of productions (P). The productions of a grammar specify the manner in which the terminals and non-
terminals can be combined to form strings. Each production consists of a non-terminal called the left side of the 
production, an arrow, and a sequence of tokens and/or on- terminals, called the right side of the production. 

• One of the non-terminals is designated as the start symbol (S); from where the production begins. 

The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the start symbol) by the 
right side of a production, for that non-terminal. 

Example 

We take the problem of palindrome language, which cannot be described by means of Regular Expression. That is, L = { 
w | w = wR } is not a regular language. But it can be described by means of CFG, as illustrated below: 

G = ( V, Σ, P, S ) 

Where: 

V = { Q, Z, N } 

Σ = { 0, 1 } 

P = { Q → Z | Q → N | Q → ℇ | Z → 0Q0 | N → 1Q1 } 
S = { Q } 

This grammar describes palindrome language, such as: 1001, 11100111, 00100, 1010101, 11111, etc. 

Syntax Analyzers 

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token streams. The parser analyzes the 
source code (token stream) against the production rules to detect any errors in the code. The output of this phase is 
a parse tree. 



 

 

This way, the parser accomplishes two tasks, i.e., parsing the code, looking for errors and generating a parse tree as the 

output of the phase. 

Derivation 

A derivation is basically a sequence of production rules, in order to get the input string. During parsing, we take two 
decisions for some sentential form of input: 

• Deciding the non-terminal which is to be replaced. 

• Deciding the production rule, by which, the non-terminal will be replaced. 

To decide which non-terminal to be replaced with production rule, we can have two options. 

Left-most Derivation 

If the sentential form of an input is scanned and replaced from left to right, it is called left-most derivation. The sentential 
form derived by the left-most derivation is called the left-sentential form. 

Right-most Derivation 

If we scan and replace the input with production rules, from right to left, it is known as right-most derivation. The 
sentential form derived from the right-most derivation is called the right-sentential form. 

Example 

Production rules: 

E → E + E 

E → E * E 

E → id  

Input string: id + id * id 

The left-most derivation is: 

E → E * E 

E → E + E * E 

E → id + E * E 

E → id + id * E 

E → id + id * id 

Notice that the left-most side non-terminal is always processed first. 

The right-most derivation is: 

E → E + E 

E → E + E * E 

E → E + E * id 



E → E + id * id 

E → id + id * id 

 

Parse Tree 

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are derived from the start symbol. 
The start symbol of the derivation becomes the root of the parse tree. Let us see this by an example from the last topic. 

We take the left-most derivation of a + b * c 

The left-most derivation is: 

E → E * E 

E → E + E * E 

E → id + E * E 

E → id + id * E 

E → id + id * id 

 

Step 1: E → E * E 

 

 

Step 2: E → E + E * E 

 

Step 3: E → id + E * E 

 



 

 

Step 4: E → id + id * E 

 

Step 5: E → id + id * id 

 



 

In a parse tree: 

• All leaf nodes are terminals. 

• All interior nodes are non-terminals. 

• In-order traversal gives original input string. 

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is traversed first, therefore the 
operator in that sub-tree gets precedence over the operator which is in the parent nodes. 

Ambiguity 

A grammar G is said to be ambiguous if it has more than one parse tree (left or right derivation) for at least one string. 

Example 

E → E + E 

E → E – E 
E → id 

For the string id + id – id, the above grammar generates two parse trees: 

 

 

The language generated by an ambiguous grammar is said to be inherently ambiguous. Ambiguity in grammar is not 
good for a compiler construction. No method can detect and remove ambiguity automatically, but it can be removed by 
either re-writing the whole grammar without ambiguity, or by setting and following associativity and precedence 
constraints. 

Left Recursion 

A grammar becomes left-recursive if it has any non-terminal ‘A’ whose derivation contains ‘A’ itself as the left-most 
symbol. Left-recursive grammar is considered to be a problematic situation for top-down parsers. Top-down parsers start 
parsing from the Start symbol, which in itself is non-terminal. So, when the parser encounters the same non-terminal in 
its derivation, it becomes hard for it to judge when to stop parsing the left non-terminal and it goes into an infinite loop. 

Example: 

(1) A => Aα | β 

 

(2) S => Aα | β  

    A => Sd  

(1) is an example of immediate left recursion, where A is any non-terminal symbol and α represents a string of non-
terminals. 

(2) is an example of indirect-left recursion. 



Removal of Left Recursion 

One way to remove left recursion is to use the following technique: 

The production 

A => Aα | β 

is converted into following productions 

A => βA' 

A'=> αA' | ε 

This does not impact the strings derived from the grammar, but it removes immediate left recursion. 

Second method is to use the following algorithm, which should eliminate all direct and indirect left recursions. 

Left Factoring 

If more than one grammar production rules has a common prefix string, then the top-down parser cannot make a choice 
as to which of the production it should take to parse the string in hand. 

Example 

If a top-down parser encounters a production like 

A ⟹ αβ | α𝜸 | … 

Then it cannot determine which production to follow to parse the string as both productions are starting from the same 
terminal (or non-terminal). To remove this confusion, we use a technique called left factoring. 

Left factoring transforms the grammar to make it useful for top-down parsers. In this technique, we make one production 
for each common prefixes and the rest of the derivation is added by new productions. 

Example 

The above productions can be written as 

A => αA' 

A'=> β | 𝜸 | …  

Now the parser has only one production per prefix which makes it easier to take decisions. 

Top Down Parsing: 

Syntax analyzers follow production rules defined by means of context-free grammar. The way the production rules are 
implemented (derivation) divides parsing into two types : top-down parsing and bottom-up parsing. 

 

 

 

 

Top-down Parsing 

When the parser starts constructing the parse tree from the start symbol and then tries to transform the start symbol to 
the input, it is called top-down parsing. 



• Recursive descent parsing : It is a common form of top-down parsing. It is called recursive as it uses recursive 
procedures to process the input. Recursive descent parsing suffers from backtracking. 

• Backtracking : It means, if one derivation of a production fails, the syntax analyzer restarts the process using 
different rules of same production. This technique may process the input string more than once to determine 
the right production. 

 

 

 

 

Recursive Descent Parsing 

Recursive descent is a top-down parsing technique that constructs the parse tree from the top and the input is read from 
left to right. It uses procedures for every terminal and non-terminal entity. This parsing technique recursively parses the 
input to make a parse tree, which may or may not require back-tracking. But the grammar associated with it (if not left 
factored) cannot avoid back-tracking. A form of recursive-descent parsing that does not require any back-tracking is 
known as predictive parsing. 

This parsing technique is regarded recursive as it uses context-free grammar which is recursive in nature. 

Back-tracking 

Top- down parsers start from the root node (start symbol) and match the input string against the production rules to 
replace them (if matched). To understand this, take the following example of CFG: 

S → rXd | rZd 

X → oa | ea 

Z → ai 

For an input string: read, a top-down parser, will behave like this: 

It will start with S from the production rules and will match its yield to the left-most letter of the input, i.e. ‘r’. The very 
production of S (S → rXd) matches with it. So the top-down parser advances to the next input letter (i.e. ‘e’). The parser 
tries to expand non-terminal ‘X’ and checks its production from the left (X → oa). It does not match with the next input 
symbol. So the top-down parser backtracks to obtain the next production rule of X, (X → ea). 

Now the parser matches all the input letters in an ordered manner. The string is accepted. 



    

 

Predictive Parser 

Predictive parser is a recursive descent parser, which has the capability to predict which production is to be used to 
replace the input string. The predictive parser does not suffer from backtracking. 

To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the next input symbols. To 
make the parser back-tracking free, the predictive parser puts some constraints on the grammar and accepts only a class 
of grammar known as LL(k) grammar. 

 

                                                      

Predictive parsing uses a stack and a parsing table to parse the input and generate a parse tree. Both the stack and the 

input contains an end symbol $ to denote that the stack is empty and the input is consumed. The parser refers to the 

parsing table to take any decision on the input and stack element combination. 



                                                                                 

 

In recursive descent parsing, the parser may have more than one production to choose from for a single instance of input, 

whereas in predictive parser, each step has at most one production to choose. There might be instances where there is no 

production matching the input string, making the parsing procedure to fail. 

 

LL Parser 

An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with some restrictions to get the 
simplified version, in order to achieve easy implementation. LL grammar can be implemented by means of both 
algorithms namely, recursive-descent or table-driven. 

LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the second L in LL(k) stands for 
left-most derivation and k itself represents the number of look aheads. Generally k = 1, so LL(k) may also be written as 
LL(1). 

            

A grammar G is LL(1) if A → α | β are two distinct productions of G: 
























































































