The z-transform

See Oppenheim and Schafer, Second Edition pages 94-139, or First Edition pages 149-201.

1 Introduction

The z-transform of a sequence $x[n]$ is

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

The z-transform can also be thought of as an operator $\mathcal{Z}\{\cdot\}$ that transforms a sequence to a function:

$$
\mathcal{Z}\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=X(z)
$$

In both cases z is a continuous complex variable.
We may obtain the Fourier transform from the z-transform by making the substitution $z=e^{j \omega}$. This corresponds to restricting $|z|=1$. Also, with $z=r e^{j \omega}$,

$$
X\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \omega}\right)^{-n}=\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n}
$$

That is, the z-transform is the Fourier transform of the sequence $x[n] r^{-n}$. For $r=1$ this becomes the Fourier transform of $x[n]$. The Fourier transform therefore corresponds to the z-transform evaluated on the unit circle:

The inherent periodicity in frequency of the Fourier transform is captured naturally under this interpretation.

The Fourier transform does not converge for all sequences - the infinite sum may not always be finite. Similarly, the z-transform does not converge for all sequences or for all values of z. The set of values of z for which the z-transform converges is called the region of convergence (ROC).

The Fourier transform of $x[n]$ exists if the sum $\sum_{n=-\infty}^{\infty}|x[n]|$ converges. However, the z-transform of $x[n]$ is just the Fourier transform of the sequence $x[n] r^{-n}$. The z-transform therefore exists (or converges) if

$$
X(z)=\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|<\infty
$$

This leads to the condition

$$
\sum_{n=-\infty}^{\infty}|x[n]||z|^{-n}<\infty
$$

for the existence of the z -transform. The ROC therefore consists of a ring in the z -plane:

In specific cases the inner radius of this ring may include the origin, and the outer radius may extend to infinity. If the ROC includes the unit circle $|z|=1$, then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

$$
X(z)=\frac{P(z)}{Q(z)},
$$

where $P(z)$ and $Q(z)$ are polynomials in z. The values of z for which $P(z)=0$ are called the zeros of $X(z)$, and the values with $Q(z)=0$ are called the poles. The zeros and poles completely specify $X(z)$ to within a multiplicative constant.

Example: right-sided exponential sequence

Consider the signal $x[n]=a^{n} u[n]$. This has the z-transform

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

Convergence requires that

$$
\sum_{n=0}^{\infty}\left|a z^{-1}\right|^{n}<\infty
$$

which is only the case if $\left|a z^{-1}\right|<1$, or equivalently $|z|>|a|$. In the ROC, the
series converges to

$$
X(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|>|a|,
$$

since it is just a geometric series. The z-transform has a region of convergence for any finite value of a.

The Fourier transform of $x[n]$ only exists if the ROC includes the unit circle, which requires that $|a|<1$. On the other hand, if $|a|>1$ then the ROC does not include the unit circle, and the Fourier transform does not exist. This is consistent with the fact that for these values of a the sequence $a^{n} u[n]$ is exponentially growing, and the sum therefore does not converge.

Example: left-sided exponential sequence

Now consider the sequence $x[n]=-a^{n} u[-n-1]$. This sequence is left-sided because it is nonzero only for $n \leq-1$. The z -transform is

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}-a^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n} \\
& =-\sum_{n=1}^{\infty} a^{-n} z^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n}
\end{aligned}
$$

For $\left|a^{-1} z\right|<1$, or $|z|<|a|$, the series converges to

$$
X(z)=1-\frac{1}{1-a^{-1} z}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|<|a| .
$$

Note that the expression for the z-transform (and the pole zero plot) is exactly the same as for the right-handed exponential sequence - only the region of convergence is different. Specifying the ROC is therefore critical when dealing with the z -transform.

Example: sum of two exponentials

The signal $x[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]$ is the sum of two real exponentials. The z -transform is

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}\left\{\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]\right\} z^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} u[n] z^{-n}+\sum_{n=-\infty}^{\infty}\left(-\frac{1}{3}\right)^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}+\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n} .
\end{aligned}
$$

From the example for the right-handed exponential sequence, the first term in this sum converges for $|z|>1 / 2$, and the second for $|z|>1 / 3$. The combined transform $X(z)$ therefore converges in the intersection of these regions,
namely when $|z|>1 / 2$. In this case

$$
X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)} .
$$

The pole-zero plot and region of convergence of the signal is

Example: finite length sequence

The signal

$$
x[n]= \begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

has z-transform

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n} \\
& =\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a} .
\end{aligned}
$$

Since there are only a finite number of nonzero terms the sum always converges when $a z^{-1}$ is finite. There are no restrictions on $a(|a|<\infty)$, and the ROC is the entire z-plane with the exception of the origin $z=0$ (where the terms in the sum are infinite). The N roots of the numerator polynomial are at

$$
z_{k}=a e^{j(2 \pi k / N)}, \quad k=0,1, \ldots, N-1,
$$

since these values satisfy the equation $z^{N}=a^{N}$. The zero at $k=0$ cancels the pole at $z=a$, so there are no poles except at the origin, and the zeros are at

$$
z_{k}=a e^{j(2 \pi k / N)}, \quad k=1, \ldots, N-1 .
$$

2 Properties of the region of convergence

The properties of the ROC depend on the nature of the signal. Assuming that the signal has a finite amplitude and that the z-transform is a rational function:

- The ROC is a ring or disk in the z-plane, centered on the origin $\left(0 \leq r_{R}<|z|<r_{L} \leq \infty\right)$.
- The Fourier transform of $x[n]$ converges absolutely if and only if the ROC of the z-transform includes the unit circle.
- The ROC cannot contain any poles.
- If $x[n]$ is finite duration (ie. zero except on finite interval $-\infty<N_{1} \leq n \leq N_{2}<\infty$), then the ROC is the entire z-plane except perhaps at $z=0$ or $z=\infty$.
- If $x[n]$ is a right-sided sequence then the ROC extends outward from the outermost finite pole to infinity.
- If $x[n]$ is left-sided then the ROC extends inward from the innermost nonzero pole to $z=0$.
- A two-sided sequence (neither left nor right-sided) has a ROC consisting of a ring in the z-plane, bounded on the interior and exterior by a pole (and not containing any poles).
- The ROC is a connected region.

3 The inverse z-transform

Formally, the inverse z-transform can be performed by evaluating a Cauchy integral. However, for discrete LTI systems simpler methods are often sufficient.

3.1 Inspection method

If one is familiar with (or has a table of) common z -transform pairs, the inverse can be found by inspection. For example, one can invert the z-transform

$$
X(z)=\left(\frac{1}{1-\frac{1}{2} z^{-1}}\right), \quad|z|>\frac{1}{2}
$$

using the z -transform pair

$$
a^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-a z^{-1}}, \quad \text { for }|z|>|a| .
$$

By inspection we recognise that

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n] .
$$

Also, if $X(z)$ is a sum of terms then one may be able to do a term-by-term inversion by inspection, yielding $x[n]$ as a sum of terms.

3.2 Partial fraction expansion

For any rational function we can obtain a partial fraction expansion, and identify the z-transform of each term. Assume that $X(z)$ is expressed as a ratio of polynomials in z^{-1} :

$$
X(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} .
$$

It is always possible to factor $X(z)$ as

$$
X(z)=\frac{b_{0}}{a_{0}} \frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)},
$$

where the c_{k} 's and d_{k} 's are the nonzero zeros and poles of $X(z)$.

- If $M<N$ and the poles are all first order, then $X(z)$ can be expressed as

$$
X(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}} .
$$

In this case the coefficients A_{k} are given by

$$
A_{k}=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}
$$

- If $M \geq N$ and the poles are all first order, then an expansion of the form

$$
X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}
$$

can be used, and the B_{r} 's be obtained by long division of the numerator by the denominator. The A_{k} 's can be obtained using the same equation as for $M<N$.

- The most general form for the partial fraction expansion, which can also deal with multiple-order poles, is

$$
X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=1, k \neq i}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}+\sum_{m=1}^{s} \frac{C_{m}}{\left(1-d_{i} z^{-1}\right)^{m}} .
$$

Ways of finding the C_{m} 's can be found in most standard DSP texts.
The terms $B_{r} z^{-r}$ correspond to shifted and scaled impulse sequences, and invert to terms of the form $B_{r} \delta[n-r]$. The fractional terms

$$
\frac{A_{k}}{1-d_{k} z^{-1}}
$$

correspond to exponential sequences. For these terms the ROC properties must be used to decide whether the sequences are left-sided or right-sided.

Example: inverse by partial fractions

Consider the sequence $x[n]$ with z-transform

$$
X(z)=\frac{1+2 z^{-1}+z^{-2}}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}}=\frac{\left(1+z^{-1}\right)^{2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}, \quad|z|>1
$$

Since $M=N=2$ this can be expressed as

$$
X(z)=B_{0}+\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{1-z^{-1}}
$$

The value B_{0} can be found by long division:

$$
\frac { 1 } { 2 } z ^ { - 2 } - \frac { 3 } { 2 } z ^ { - 1 } + 1 \longdiv { 2 } \begin{array} { r }
{ \frac { 2 } { z ^ { - 2 } + 2 z ^ { - 1 } + 1 } } \\
{ \frac { z ^ { - 2 } - 3 z ^ { - 1 } + 2 } { 5 z ^ { - 1 } - 1 } }
\end{array}
$$

SO

$$
X(z)=2+\frac{-1+5 z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}
$$

The coefficients A_{1} and A_{2} can be found using

$$
A_{k}=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}
$$

So

$$
A_{1}=\left.\frac{1+2 z^{-1}+z^{-2}}{1-z^{-1}}\right|_{z^{-1}=2}=\frac{1+4+4}{1-2}=-9
$$

and

$$
A_{2}=\left.\frac{1+2 z^{-1}+z^{-2}}{1-\frac{1}{2} z^{-1}}\right|_{z^{-1}=1}=\frac{1+2+1}{1 / 2}=8
$$

Therefore

$$
X(z)=2-\frac{9}{1-\frac{1}{2} z^{-1}}+\frac{8}{1-z^{-1}}
$$

Using the fact that the ROC is $|z|>1$, the terms can be inverted one at a time by inspection to give

$$
x[n]=2 \delta[n]-9(1 / 2)^{n} u[n]+8 u[n] .
$$

3.3 Power series expansion

If the z -transform is given as a power series in the form

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =\ldots+x[-2] z^{2}+x[-1] z^{1}+x[0]+x[1] z^{-1}+x[2] z^{-2}+\ldots,
\end{aligned}
$$

then any value in the sequence can be found by identifying the coefficient of the appropriate power of z^{-1}.

Example: finite-length sequence

The z-transform

$$
X(z)=z^{2}\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)\left(1-z^{-1}\right)
$$

can be multiplied out to give

$$
X(z)=z^{2}-\frac{1}{2} z-1+\frac{1}{2} z^{-1} .
$$

By inspection, the corresponding sequence is therefore

$$
x[n]=\left\{\begin{array}{lc}
1 & n=-2 \\
-\frac{1}{2} & n=-1 \\
-1 & n=0 \\
\frac{1}{2} & n=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

or equivalently

$$
x[n]=1 \delta[n+2]-\frac{1}{2} \delta[n+1]-1 \delta[n]+\frac{1}{2} \delta[n-1] .
$$

Example: power series expansion

Consider the z-transform

$$
X(z)=\log \left(1+a z^{-1}\right), \quad|z|>|a| .
$$

Using the power series expansion for $\log (1+x)$, with $|x|<1$, gives

$$
X(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^{n} z^{-n}}{n}
$$

The corresponding sequence is therefore

$$
x[n]= \begin{cases}(-1)^{n+1} \frac{a^{n}}{n} & n \geq 1 \\ 0 & n \leq 0\end{cases}
$$

Example: power series expansion by long division

Consider the transform

$$
X(z)=\frac{1}{1-a z^{-1}}, \quad|z|>|a|
$$

Since the ROC is the exterior of a circle, the sequence is right-sided. We therefore divide to get a power series in powers of z^{-1} :

$$
\begin{aligned}
&\left.1-a z^{-1}\right) \frac{1+a z^{-1}+a^{2} z^{-2}+\cdots}{1} \\
& \frac{1-a z^{-1}}{a z^{-1}} \\
& \frac{a z^{-1}-a^{2} z^{-2}}{a^{2} z^{-2}+\cdots}
\end{aligned}
$$

or

$$
\frac{1}{1-a z^{-1}}=1+a z^{-1}+a^{2} z^{-2}+\cdots
$$

Therefore $x[n]=a^{n} u[n]$.

Example: power series expansion for left-sided sequence

Consider instead the z-transform

$$
X(z)=\frac{1}{1-a z^{-1}}, \quad|z|<|a| .
$$

Because of the ROC, the sequence is now a left-sided one. Thus we divide to obtain a series in powers of z :

$$
\begin{gathered}
-a+z) \frac{-a^{-1} z-a^{-2} z^{2}-\cdots}{\frac{z-a^{-1} z^{2}}{a z^{-1}}}
\end{gathered}
$$

Thus $x[n]=-a^{n} u[-n-1]$.

4 Properties of the z-transform

In this section, if $X(z)$ denotes the z-transform of a sequence $x[n]$ and the ROC of $X(z)$ is indicated by R_{x}, then this relationship is indicated as

$$
x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z), \quad \text { ROC }=R_{x} .
$$

Furthermore, with regard to nomenclature, we have two sequences such that

$$
\begin{array}{ll}
x_{1}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_{1}(z), & \text { ROC }=R_{x_{1}} \\
x_{2}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_{2}(z), & \text { ROC }=R_{x_{2}} .
\end{array}
$$

4.1 Linearity

The linearity property is as follows:

$$
a x_{1}[n]+b x_{2}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} a X_{1}(z)+b X_{2}(z), \quad \text { ROC contains } R_{x_{1}} \cap R_{x_{1}} .
$$

4.2 Time shifting

The time-shifting property is as follows:

$$
x\left[n-n_{0}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_{0}} X(z), \quad \text { ROC }=R_{x} .
$$

(The ROC may change by the possible addition or deletion of $z=0$ or $z=\infty$.) This is easily shown:

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} x\left[n-n_{0}\right] z^{-n}=\sum_{m=-\infty}^{\infty} x[m] z^{-\left(m+n_{0}\right)} \\
& =z^{-n_{0}} \sum_{m=-\infty}^{\infty} x[m] z^{-m}=z^{-n_{0}} X(z)
\end{aligned}
$$

Example: shifted exponential sequence

Consider the z-transform

$$
X(z)=\frac{1}{z-\frac{1}{4}}, \quad|z|>\frac{1}{4} .
$$

From the ROC, this is a right-sided sequence. Rewriting,

$$
X(z)=\frac{z^{-1}}{1-\frac{1}{4} z^{-1}}=z^{-1}\left(\frac{1}{1-\frac{1}{4} z^{-1}}\right), \quad|z|>\frac{1}{4} .
$$

The term in brackets corresponds to an exponential sequence $(1 / 4)^{n} u[n]$. The factor z^{-1} shifts this sequence one sample to the right. The inverse z-transform is therefore

$$
x[n]=(1 / 4)^{n-1} u[n-1] .
$$

Note that this result could also have been easily obtained using a partial fraction expansion.

4.3 Multiplication by an exponential sequence

The exponential multiplication property is

$$
z_{0}^{n} x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X\left(z / z_{0}\right), \quad \text { ROC }=\left|z_{0}\right| R_{x},
$$

where the notation $\left|z_{0}\right| R_{x}$ indicates that the ROC is scaled by $\left|z_{0}\right|$ (that is, inner and outer radii of the ROC scale by $\left.\left|z_{0}\right|\right)$. All pole-zero locations are similarly scaled by a factor z_{0} : if $X(z)$ had a pole at $z=z_{1}$, then $X\left(z / z_{0}\right)$ will have a pole at $z=z_{0} z_{1}$.

- If z_{0} is positive and real, this operation can be interpreted as a shrinking or expanding of the z -plane - poles and zeros change along radial lines in the z-plane.
- If z_{0} is complex with unit magnitude ($z_{0}=e^{j \omega_{0}}$) then the scaling operation corresponds to a rotation in the z-plane by and angle ω_{0}. That is, the poles and zeros rotate along circles centered on the origin. This can be interpreted as a shift in the frequency domain, associated with modulation in the time domain by $e^{j \omega_{0} n}$. If the Fourier transform exists, this becomes

$$
e^{j \omega_{0} n} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j\left(\omega-\omega_{0}\right)}\right) .
$$

Example: exponential multiplication

The z-transform pair

$$
u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-z^{-1}}, \quad|z|>1
$$

can be used to determine the z -transform of $x[n]=r^{n} \cos \left(\omega_{0} n\right) u[n]$. Since $\cos \left(\omega_{0} n\right)=1 / 2 e^{j \omega_{0} n}+1 / 2 e^{-j \omega_{0} n}$, the signal can be rewritten as

$$
x[n]=\frac{1}{2}\left(r e^{j \omega_{0}}\right)^{n} u[n]+\frac{1}{2}\left(r e^{-j \omega_{0}}\right)^{n} u[n] .
$$

From the exponential multiplication property,

$$
\begin{aligned}
\frac{1}{2}\left(r e^{j \omega_{0}}\right)^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1 / 2}{1-r e^{j \omega_{0}} z^{-1}}, & |z|>r \\
\frac{1}{2}\left(r e^{-j \omega_{0}}\right)^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1 / 2}{1-r e^{-j \omega_{0} z^{-1}}}, & |z|>r,
\end{aligned}
$$

so

$$
\begin{aligned}
X(z) & =\frac{1 / 2}{1-r e^{j \omega_{0}} z^{-1}}+\frac{1 / 2}{1-r e^{-j \omega_{0}} z^{-1}}, \quad|z|>r \\
& =\frac{1-r \cos \omega_{0} z^{-1}}{1-2 r \cos \omega_{0} z^{-1}+r^{2} z^{-2}}, \quad|z|>r .
\end{aligned}
$$

4.4 Differentiation

The differentiation property states that

$$
n x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}-z \frac{d X(z)}{d z}, \quad \mathrm{ROC}=R_{x}
$$

This can be seen as follows: since

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

we have

$$
-z \frac{d X(z)}{d z}=-z \sum_{n=-\infty}^{\infty}(-n) x[n] z^{-n-1}=\sum_{n=-\infty}^{\infty} n x[n] z^{-n}=\mathcal{Z}\{n x[n]\}
$$

Example: second order pole

The z-transform of the sequence

$$
x[n]=n a^{n} u[n]
$$

can be found using

$$
a^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-a z^{-1}}, \quad|z|>a
$$

to be

$$
X(z)=-z \frac{d}{d z}\left(\frac{1}{1-a z^{-1}}\right)=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad|z|>a
$$

4.5 Conjugation

This property is

$$
x^{*}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^{*}\left(z^{*}\right), \quad \mathrm{ROC}=R_{x} .
$$

4.6 Time reversal

Here

$$
x^{*}[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^{*}\left(1 / z^{*}\right), \quad \mathrm{ROC}=\frac{1}{R_{x}}
$$

The notation $1 / R_{x}$ means that the ROC is inverted, so if R_{x} is the set of values such that $r_{R}<|z|<r_{L}$, then the ROC is the set of values of z such that $1 / r_{l}<|z|<1 / r_{R}$.

Example: time-reversed exponential sequence

The signal $x[n]=a^{-n} u[-n]$ is a time-reversed version of $a^{n} u[n]$. The z-transform is therefore

$$
X(z)=\frac{1}{1-a z}=\frac{-a^{-1} z^{-1}}{1-a^{-1} z^{-1}}, \quad|z|<\left|a^{-1}\right|
$$

4.7 Convolution

This property states that

$$
x_{1}[n] * x_{2}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_{1}(z) X_{2}(z), \quad \text { ROC contains } R_{x_{1}} \cap R_{x_{2}}
$$

Example: evaluating a convolution using the z-transform

The z-transforms of the signals $x_{1}[n]=a^{n} u[n]$ and $x_{2}[n]=u[n]$ are

$$
X_{1}(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\frac{1}{1-a z^{-1}}, \quad|z|>|a|
$$

and

$$
X_{2}(z)=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}, \quad|z|>1 .
$$

For $|a|<1$, the z -transform of the convolution $y[n]=x_{1}[n] * x_{2}[n]$ is

$$
Y(z)=\frac{1}{\left(1-a z^{-1}\right)\left(1-z^{-1}\right)}=\frac{z^{2}}{(z-a)(z-1)}, \quad|z|>1 .
$$

Using a partial fraction expansion,

$$
Y(z)=\frac{1}{1-a}\left(\frac{1}{1-z^{-1}}-\frac{a}{1-a z^{-1}}\right), \quad|z|>1
$$

so

$$
y[n]=\frac{1}{1-a}\left(u[n]-a^{n+1} u[n]\right) .
$$

4.8 Initial value theorem

If $x[n]$ is zero for $n<0$, then

$$
x[0]=\lim _{z \rightarrow \infty} X(z) .
$$

Some common z-transform pairs are:

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{1-a z^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|<\|a\|$
$0 \leq n \leq N-1$,	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>0$
$a^{n} \quad$$\left.1-2 r \cos \left(\omega_{0}\right) z_{0}\right) z^{-1}+r^{2} z^{-2}$ $\|z\|>1$ 0 $\|z\|>r$		

4.9 Relationship with the Laplace transform

Continuous-time systems and signals are usually described by the Laplace transform. Letting $z=e^{s T}$, where s is the complex Laplace variable

$$
s=d+j \omega,
$$

we have

$$
z=e^{(d+j \omega) T}=e^{d T} e^{j \omega T} .
$$

Therefore

$$
|z|=e^{d T} \quad \text { and } \quad \varangle z=\omega T=2 \pi f / f_{s}=2 \pi \omega / \omega_{s},
$$

where ω_{s} is the sampling frequency. As ω varies from ∞ to ∞, the s-plane is mapped to the z-plane:

- The $j \omega$ axis in the s-plane is mapped to the unit circle in the z-plane.
- The left-hand s-plane is mapped to the inside of the unit circle.
- The right-hand s-plane maps to the outside of the unit circle.

