
1 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

CONTENTS

CHAPTERS PAGE NO

1. Introduction to DBMS 3

2. ER Data Model 14

3. Relational Algebra 24

4. Relational Calculus 31

5. SQL 36

6. Relational Database Design 45

7. Query Processing Strategy 57

8. Transaction 59

9. Concurrency Control 66

10. Database Recovery Techniques 72

2 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 1

Introduction: What is Database Management System (DBMS)?

� Collection of interrelated data and set of programs to access or manipulate those

data is known as database management system.

� The collection of data, usually referred to as the database, contains information

relevant to an enterprise.

� The primary goal of a DBMS is to provide a way to store and retrieve database

information that is both convenient and efficient.

Database- System Applications

� Banking: For customer information, accounts, loans and all transactions.

� Airlines: For reservations, schedules information.

� Universities: For student information, course registration, and grades.

� Sales: For customers, products, purchase information.

� Manufacturing: For production, inventory, orders, supply chain.

� Human resources: For employee records, salaries, tax deductions.

Drawbacks of using file systems to store data (or Advantages of DBMS)

(i) Data redundancy and inconsistency

Since different programmers create the files and application programs over a long

period, the various files are likely to have different formats and the programs may be

written in several programming languages. Moreover, the same information may be

duplicated in several places (files). For example, the address and telephone number of a

particular customer may appear in a file that consists of savings-account records and in a

file that consists of checking-account records. This redundancy leads to higher storage

and access cost. In addition, it may lead to data inconsistency; that is, the various copies

3 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

of the same data may no longer agree. For example, a changed customer address may

be reflected in savings-account records but not elsewhere in the system.

(ii) Difficulty in accessing data

Suppose that one of the bank officers needs to find out the names of all customers who

live within a particular postal-code area. The officer asks the data-processing department

to generate such a list. Because the designers of the original system did not anticipate

this request, there is no application program on hand to meet it. There is, however, an

application program to generate the list of all customers. The bank officer has now two

choices: either obtain the list of all customers and extract the needed information

manually or ask a system programmer to write the necessary application program. Both

alternatives are obviously unsatisfactory. Suppose that such a program is written, and

that, several days later, the same officer needs to trim that list to include only those

customers who have an account balance of $10,000 or more. As expected, a program to

generate such a list does not exist. Again, the officer has the preceding two options,

neither of which is satisfactory. The point here is that conventional file-processing

environments do not allow needed data to be retrieved in a convenient and efficient

manner. More responsive data-retrieval systems are required for general use.

(iii) Data isolation

Because data are scattered in various files, and files may be in different formats, writing

new application programs to retrieve the appropriate data is difficult.

(iv) Integrity problems

The data values stored in the database must satisfy certain types of consistency

constraints. For example, the balance of a bank account may never fall below a

prescribed amount (say, $25). Developers enforce these constraints in the system by

adding appropriate code in the various application programs. However, when new

4 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

constraints are added, it is difficult to change the programs to enforce them. The

problem is compounded when constraints involve several data items from different files.

(v) Concurrent access by multiple users

For the sake of overall performance of the system and faster response, many systems

allow multiple users to update the data simultaneously. In such an environment,

interaction of concurrent updates may result in inconsistent data. Consider bank account

A, containing $500. If two customers withdraw funds (say $50 and $100 respectively)

from account A at about the same time, the result of the concurrent executions may

leave the account in an incorrect (or inconsistent) state. Suppose that the programs

executing on behalf of each withdrawal read the old balance, reduce that value by the

amount being withdrawn, and write the result back. If the two programs run

concurrently, they may both read the value $500, and write back $450 and $400,

respectively. Depending on which one writes the value last, the account may contain

either $450 or $400, rather than the correct value of $350. To guard against this

possibility, the system must maintain some form of supervision. But supervision is

difficult to provide because data may be accessed by many different application

programs that have not been coordinated previously.

(vi) Atomicity Problems

A computer system, like any other mechanical or electrical device, is subject to failure. In

many applications, it is crucial that, if a failure occurs, the data be restored to the

consistent state that existed prior to the failure. Consider a program to transfer $50 from

account A to account B. If a system failure occurs during the execution of the program, it

is possible that the $50 was removed from account A but was not credited to account B,

resulting in an inconsistent database state. Clearly, it is essential to database consistency

that either both the credit and debit occur, or that neither occur. That is, the funds

transfer must be atomic—it must happen in its entirety or not at all. It is difficult to

ensure atomicity in a conventional file-processing system.

5 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

 (vii) Security problems

Not every user of the database system should be able to access all the data. For

example, in a banking system, payroll personnel need to see only that part of the

database that has information about the various bank employees. They do not need

access to information about customer accounts. But, since application programs are

added to the system in an ad hoc manner, enforcing such security constraints is difficult.

Levels of Abstraction

� Physical level: The lowest level of abstraction describes how the data are actually

stored. The physical level describes complex low-level data structures in detail.

� Logical level: The next-higher level of abstraction describes what data are stored in

the database, and what relationships exist among those data. The logical level thus

describes the entire database in terms of a small number of relatively simple

structures.

� View level: It is the highest level of data abstraction which describes only part of the

entire database. The view level of abstraction exists to simplify their interaction with

the system.

6 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Instances and Schemas

� Schema – Schema refers to the overall design of a database.

Example: The database consists of information about a set of customers and

accounts and the relationship between them). It is analogous to type information of

a variable in a program.

� Physical schema: database design at the physical level

� Logical schema: database design at the logical level

� Instance – Instance refers to the actual content of the database at a particular

instance. It is analogous to the value of a variable

� Physical Data Independence –Physical data independence is the ability to modify the

physical schema without having alteration to the logical schemas or application

programs.

� Logical Data Independence – Logical data independence is the ability to modify the

logical schema without having alteration in physical schemas or application

programs.

Database Languages

1. Data-Manipulation language

A data-manipulation language (DML) is a language that enables users to access or

manipulate data in a database. The types of access are:

� Retrieval of information stored in the database.

� Insertion of new information into the database.

� Deletion of information from the database.

� Modification of data stored in the database.

7 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

These are basically of two types:

� Procedural DMLs require a user to specify what data are needed and how to get

those data.

� Declarative DMLs (also referred to non procedural DMLs) require a user to

specify what data are needed without specifying how to get those data.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is known a query language. The most widely used query

language is SQL which will be discussed vividly later on.

Example of SQL Command:

TABLE: STUD

nam roll branch dob cgpa

Rajeeb 09m21 MECH 08/09/1988 5.6

Gobind 09m23 MECH 09/08/1991 9.8

Radha 09ee02 EEE 09/04/1988 6.5

Sam 09cs01 CSE 14/03/1998 7.4

Aakash 09et03 ETC 23/12/1990 8.4

Sufian 09cs05 CSE 04/10/1989 9.4

Example 1: Find names of all students from database STUD whose CGPA is greater than 7.

SELECT nam

FROM Stud

WHERE cgpa>7

Output:

Gobind

Sam

Aakash

Sufian

Example 2: Find names and cgpa of all students from database STUD whose branch is CSE.

8 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

SELECT nam, cgpa

FROM Stud

WHERE branch=CSE

Output:

Sam 7.4

Sufian 9.4

2. Data Definition language(DDL)

DDL is a special language to specify a database schema or to create a database.

create table account

 (

 account_no char(10),

 branch_name char(10),

 balance integer

)

Output:

account_no branch_name balance

Database System Architecture

� A database system is partitioned into modules that deal with each of the

responsibilities of the overall system. The functional components of a database

system can be broadly divided into the storage manager and the query processor

components.

� The storage manager is important because databases typically require a large

amount of storage space.

� The query processor is important because it helps the database system simplify and

facilitate access to data.

1. Storage Manager

A storage manager is a program module that provides the interface between the low level

data stored in the database and the application programs and queries submitted to the

system. The storage manager is responsible for the interaction with the file manager. The

9 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

raw data are stored on the disk using the file system, which is usually provided by a

conventional operating system. The storage manager translates the various DML statements

into low-level file-system commands. Thus, the storage manager is responsible for storing,

retrieving, and updating data in the database. The storage manager components include:

� Authorization and integrity manager, which tests for the satisfaction of integrity

constraints and checks the authority of users to access data.

� Transaction manager, which ensures that the database remains in a consistent

(correct) state despite system failures, and that concurrent transaction executions

proceed without conflicting.

� File manager, which manages the allocation of space on disk storage and the data

structures used to represent information stored on disk.

� Buffer manager, which is responsible for fetching data from disk storage into main

memory, and deciding what data to cache in main memory. The buffer manager is a

critical part of the database system, since it enables the database to handle data sizes

that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical system

implementation:

� Data files, which store the database itself.

� Data dictionary, which stores metadata about the structure of the database, in

particular the schema of the database.

� Indices, which provide fast access to data items that hold particular values.

2. The Query Processor

 The query processor components include

� DDL interpreter, which interprets DDL statements and records the definitions in the

data dictionary.

10 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� DML compiler, which translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query evaluation engine

understands.

A query can usually be translated into any of a number of alternative evaluation plans

that all give the same result. The DML compiler also performs query optimization,

that is, it picks the lowest cost evaluation plan from among the alternatives.

� Query evaluation engine, which executes low-level instructions generated by the

DML compiler.

11 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Application Architectures

� In two-tier architecture, the application is partitioned into a component that resides

at the client machine, which invokes database system functionality at the server

machine through query language statements. Application program interface

standards like ODBC and JDBC are used for interaction between the client and the

server.

� In contrast, in three-tier architecture, the client machine acts as merely a front end

and does not contain any direct database calls. Instead, the client end communicates

with an application server, usually through a forms interface. The application server

in turn communicates with a database system to access data.

12 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Data Models

� A collection of conceptual tools for describing data, data relationships, data

semantics and consistency constraints is known as Data Model.

� A data model provides a way to describe the design of a database at the physical,

logical and view level.

Various data models are:

(i) Entity-Relationship Model

The entity–relationship model is a high-level data model. It is based on a perception

of a real world that consists of a collection of basic objects, called entities, and of

relationships among these objects.

(ii) Relational Data Model

� A relational database consists of a collection of tables, each of which is assigned a

unique name.

� A row in a table represents a relationship among a set of values. Since a table is a

collection of such relationships, there is a close correspondence between the

concept of table and the mathematical concept of relation, from which the

relational data model takes its name.

(iii) Object Oriented Data Model

The object-oriented model can be seen as extending the E-R model with notions of

encapsulation, methods (functions), and object identity.

(iv) Network Model

The network model is a database model conceived as a flexible way of representing

objects and their relationships. Its distinguishing feature is that the schema, viewed

as a graph in which object types are nodes and relationship types are arcs, is not

restricted to being a hierarchy or lattice.

13 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 2

Entity Relationship Model

� The entity-relationship (E-R) data model perceives the real world as consisting of

basic objects, called entities, and relationships among these objects.

� It was developed to facilitate database design by allowing specification of an

enterprise schema, which represents the overall logical structure of a database.

� The E-R model is very useful in mapping the meanings and interactions of real-world

enterprises onto a conceptual schema.

Basic Concepts

The E-R data model employs three basic notions: entity sets, attributes and relationship sets.

(i) Entity Sets

� An entity is a “thing” or “object” in the real world that is distinguishable from all

other objects. For example, each person in an enterprise is an entity.

� An entity has a set of properties, and the values for some set of properties may

uniquely identify an entity.

� An entity set is a set of entities of the same type that share the same properties, or

attributes.

� The set of all persons who are customers at a given bank, for example, can be

defined as the entity set customer.

� Entity sets do not need to be disjoint. For example, it is possible to define the entity

set of all employees of a bank (employee) and the entity set of all customers of the

bank (customer). A person entity may be an employee entity, a customer entity,

both, or neither.

(ii) Attributes

� Attributes are descriptive properties possessed by each member of an entity set.

14 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� An entity is represented by a set of attributes.

� Possible attributes of the customer entity set are customer-id, customer-name,

customer-street, and customer-city.

� For each attribute, there is a set of permitted values, called the domain, or value set,

of that attribute.

� An attribute, as used in the E-R model, can be characterized by the following

attribute types:

(i)Simple and composite attributes

Simple attributes are not divided into subparts. Composite attributes, on the other hand,

can be divided into subparts (that is, other attributes). For example, an attribute name could

be structured as a composite attribute consisting of first-name, middle-initial, and last-name.

(ii) Single-valued and multi-valued attributes

The attributes in our examples all have a single value for a particular entity. For instance, the

loan-number attribute for a specific loan entity refers to only one loan number. Such

attributes are said to be single valued. There may be instances where an attribute has a set

of values for a specific entity. Consider an employee entity set with the attribute phone-

number. An employee may have zero, one, or several phone numbers, and different

employees may have different numbers of phones. This type of attribute is said to be multi-

valued.

(iii) Derived attribute

The value for this type of attribute can be derived from the values of other related attributes

or entities. If the customer entity set also has an attribute date-of-birth, we can calculate age

from date-of-birth and the current date. Thus, age is a derived attribute. In this case, date-of-

birth may be referred to as a base attribute, or a stored attribute.

15 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

(iii) Relationship Sets

� A relationship is an association among several entities.

� A relationship set is a set of relationships of the same type. Formally, it is a

mathematical relation on n ≥ 2 (possibly non distinct) entity sets. If E1, E2, . . .,En are

entity sets, then a relationship set R is a subset of {(e1, e2, . . . , en) | e1 ∈ E1, e2 ∈ E2, . .

. , en ∈ En} where (e1, e2, . . . , en) is a relationship.

Constraints

An E-R enterprise schema may define certain constraints to which the contents of a

database must conform. In this section, we examine mapping cardinalities and participation

constraints, which are two of the most important types of constraints.

(i)Mapping cardinalities, or cardinality ratios, express the number of entities to which

another entity can be associated via a relationship set.

For a binary relationship set R between entity sets A and B, the mapping cardinality must be

one of the following:

(a) One to one. An entity in A is associated with at most one entity in B, and an entity in B

is associated with at most one entity in A.

(b) One to many. An entity in A is associated with any number (zero or more) of entities

in B. An entity in B, however, can be associated with at most one entity in A.

(c) Many to one. An entity in A is associated with at most one entity in B. An entity in B,

however, can be associated with any number (zero or more) of entities in A.

(d) Many to many. An entity in A is associated with any number (zero or more) of entities

in B, and an entity in B is associated with any number (zero or more) of entities in A.

16 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

One-to-one One-to-many

Many-to-one Many-to-many

(ii) Participation Constraints

� The participation of an entity set E in a relationship set R is said to be total if every

entity in E participates in at least one relationship in R.

� If only some entities in E participate in relationships in R, the participation of entity

set E in relationship R is said to be partial.

� For example, we expect every loan entity to be related to at least one customer

through the borrower relationship. Therefore the participation of loan in the

relationship set borrower is total.

17 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� In contrast, an individual can be a bank customer whether or not she has a loan with

the bank. Hence, it is possible that only some of the customer entities are related to

the loan entity set through the borrower relationship, and the participation of

customer in the borrower relationship set is therefore partial.

For below examples consider following BANKING ENTERPRISE schemas:

Branch (branch-name, branch-city, assets)

Customer (customer-name, customer-street, customer-city)

Loan (loan-number, branch-name, amount)

Borrower (customer-name, loan-number)

Account (account-number, branch-name, balance)

Depositor (customer-name, account-number)

Keys

� A superkey is a set of one or more attributes that, taken collectively, allow us to

identify uniquely an entity in the entity set.

� For example, the customer-id attribute of the entity set customer is sufficient to

distinguish one customer entity from another. Thus, customer-id is a superkey.

Similarly, the combination of customer-name and customer-id is a superkey for

the entity set customer. The customer-name attribute of customer is not a

superkey, because several people might have the same name.

� The concept of a superkey is not sufficient for our purposes, since, as we saw, a

superkey may contain extraneous attributes. If K is a superkey, then so is any

superset of K. We are often interested in superkeys for which no proper subset is

a superkey. Such minimal superkeys are called candidate keys.

18 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� It is possible that several distinct sets of attributes could serve as a candidate key.

Suppose that a combination of customer-name and customer-street is sufficient

to distinguish among members of the customer entity set. Then, both {customer-

id} and {customer-name, customer-street} are candidate keys. Although the

attributes customerid and customer-name together can distinguish customer

entities, their combination does not form a candidate key, since the attribute

customer-id alone is a candidate key.

� A primary key denote a candidate key that is chosen by the database designer as

the principal means of identifying entities within an entity set.

Entity Relationship(ER) Diagram

An E-R diagram can express the overall logical structure of a database graphically. E-R

diagrams are simple and clear—qualities that may well account in large part for the

widespread use of the E-R model. Such a diagram consists of the following major

components:

� Rectangles, which represent entity sets

� Ellipses, which represent attributes

� Diamonds, which represent relationship sets

� Lines, which link attributes to entity sets and entity sets to relationship sets

� Double ellipses, which represent multivalued attributes

� Dashed ellipses, which denote derived attributes

� Double lines, which indicate total participation of an entity in a relationship set

� Double rectangles, which represent weak entity sets

Consider the entity-relationship diagram, which consists of two entity sets, customer and

loan, related through a binary relationship set borrower. The attributes associated with

customer are customer-id, customer-name, customer-street, and customer-city. The

attributes associated with loan are loan-number and amount. In ER diagram, attributes of an

19 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

entity set that are members of the primary key are underlined. The relationship set

borrower may be many-to-many, one-to-many, many-to-one, or one-to-one.

One-to-one

One-to-many

Many-to-one

20 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Many-to-many

Figure1 shows how composite attributes can be represented in the E-R notation. Here, a

composite attribute name, with component attributes first-name, middle-initial, and last-

name replaces the simple attribute customer-name of customer. Also, a composite attribute

address, whose component attributes are street, city, state, and zip-code replaces the

attributes customer-street and customer-city of customer. The attribute street is itself a

composite attribute whose component attributes are street-number, street-name, and

apartment number. Figure 1 also illustrates a multi-valued attribute phone-number, depicted

by a double ellipse, and a derived attribute age, depicted by a dashed ellipse.

Figure 1

21 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

E-R diagram for the banking enterprise

Weak and Strong Entity Set

� An entity set may not have sufficient attributes to form a primary key. Such an entity

set is termed a weak entity set. An entity set that has a primary key is termed a

strong entity set.

� As an illustration, consider the entity set payment, which has the three attributes:

payment-number, payment-date, and payment-amount. Payment numbers are

typically sequential numbers, starting from 1, generated separately for each loan.

Thus, although each payment entity is distinct, payments for different loans may

share the same payment number. Thus, this entity set does not have a primary key; it

is a weak entity set.

22 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

23 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 3

Relational Algebra

� The relational algebra is a procedural query language.

� It consists of a set of operations that take one or two relations (i.e. tables) as input

and produce a new relation (i.e. table) as their result.

� The fundamental operations in the relational algebra are select, project, union, set

difference, Cartesian product, and rename.

� In addition to the fundamental operations, there are several other operations—
namely, set intersection, join, division, and assignment.

Fundamental Operation

� The select, project, and rename operations are called unary operations, because they

operate on one relation (or table).

� Union, set difference and Cartesian product operations operate on pairs of relations

(or tables) and are, therefore, called binary operations.

For all the below examples use following database schemas:

Branch (branch-name, branch-city, assets)

Customer (cust-name, cust-street, cust-city)

Loan (loan-number, branch-name, amount)

Borrower (cust-name, loan-number)

Account (account-number, branch-name, balance)

Depositor (cust-name, account-number)

24 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

branch

branch-name branch-city assets

Proof Road Balasore 6000

Evening Balasore 7000

Charampa Bhadrak 5000

Main Balasore 12000

loan

loan-number branch-name amount

L 01 Proof Road 2000

L 02 Proof Road 2500

L 03 Evening 4500

account

account-number branch-name balance

A 01 Evening 900

A 02 Proof Road 1100

A 03 Main 500

customer

cust-name cust-street cust-city

Shaswati DRDO Colony Balasore

Nivedita Remuna Balasore

Veena Bant Chhaka Bhadrak

Heera Baramunda BBSR

borrower

cust-name loan-number

Shaswati L 02

Nivedita L 01

Veena L 03

depositer

cust-name account-number

Shaswati A 03

Nivedita A 01

Heera A 02

1. Select Operation(σ)

� The select operation selects tuples /rows that satisfy a given predicate (condition).

� We use the lowercase Greek letter sigma (σ) to denote selection.

� The predicate appears as a subscript to σ i.e. σp where p is the predicate/ condition.

� The argument relation is in parentheses after the σ.

� In general, we allow comparisons using =, _=, <, ≤, >, ≥ in the selection predicate.

� Furthermore, we can combine several predicates into a larger predicate by using the

connectives and (^), or (v), and not (￢).

25 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Example 1: Select all tuples (or rows) of the loan relation where the branch is “Proof Road”.

Solution: σ branch-name =“Proof Road” (loan)

loan-number branch-name amount

L 01 Proof Road 2000

L 02 Proof Road 2500

.

Example 2: Find all tuples of loan relation in which the loan amount is more than 2000.

Solution: σ amount > 200 0 (loan)

loan-number branch-name amount

L 02 Proof Rod 2500

L 03 Evening 4500

.

Example 3: Find all tuples pertaining to loans of more than 2000 made by the Proof Road

branch.

Solution: σbranch-name =“Proof Road” ∧ amount > 2000 (loan)

loan-number branch-name amount

L 02 Proof Road 2500

.

2. Project Operation (Π)

� The project operation is a unary operation that returns its argument relation, with

certain attributes left out. Since a relation is a set, any duplicate rows are eliminated.

� Projection is denoted by the uppercase Greek letter pi (Π).

26 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� We list those attributes that we wish to appear in the result as a subscript to Π.

Example 4: List all loan numbers and the amount of the loan relation.

Solution: Π loan-number, amount (loan)

loan-number amount

L 01 2000

L 02 2500

L 03 4500

.

Example 5: Find name of those customers who live in Remuna.

Solution: Π cust-name (σcust-city =“Remuna” (customer))

cust-name

Nivedita

.

3. Union(U)

The union of two relation r and s, r U s is valid if:

1. The relations r and s must be of the same arity. That is, they must have the same

number of attributes.

2. The domains of the ith attribute of r and the ith attribute of s must be the same,

for all i.

Example 6: Find the names of all bank customers who have either an account or a loan or

both.

Solution: Π cust-name (borrower) U Π cust-name (depositor)

27 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

4. Set difference(---)

� The set-difference operation, denoted by −, allows us to find tuples that are in one

relation but are not in another.

� The expression r − s produces a relation containing those tuples in r but not in s.

Example 6: Find all customers of the bank who have an account but not a loan.

Solution: Π cust-name (depositor) – Π cust-name (borrower)

cust-name

Heera

.

5. Cartesian Product(×)

� The Cartesian-product operation, denoted by a cross (×), allows us to combine

information from two relations (tables).

� We write the Cartesian product of relations r1 and r2 as r1 × r2.

� If r1 has m attributes and r2 has n attributes, then r1 × r2 has m+n attributes.

� If r1 has p tuples and r2 has q tuples, then r1 × r2 has p × q tuples.

For example, the relation schema for r = borrower × loan is

(borrower.cust-name, borrower.loan-number, loan.loan-number, loan.branch-name,

loan.amount).

With this schema, we can distinguish borrower.loan-number from loan.loan-number. For

those attributes that appear in only one of the two schemas, we shall usually drop the

relation-name prefix. This simplification does not lead to any ambiguity. We can then write

the relation schema for r as (cust-name, borrower.loan-number, loan.loan-number, branch-

name, amount).

28 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

cust-name borrower.loan-number loan.loan-number branch-name amount

Shaswati L 02 L 01 Proof Road 2000

Shaswati L 02 L 02 Proof Road 2500

Shaswati L 02 L 03 Evening 4500

Nivedita L 01 L 01 Proof Road 2000

Nivedita L 01 L 02 Proof Road 2500

Nivedita L 01 L 03 Evening 4500

Veena L 03 L 01 Proof Road 2000

Veena L 03 L 02 Proof Road 2500

Veena L 03 L 03 Evening 4500

Example 7: Find name of customers who have a loan at the Proof Road branch.

Solution:

Π cust-name (σborrower.loan-number=loan.loan-number(σbranch-name=”Proof Road” (borrower × loan)))

6. Rename(ρ)

� Given a relational-algebra expression E, the expression ρx (E) returns the result of

expression E under the name x.

� A second form of the rename operation is as follows. Assume that a relational

algebra expression E has arity n. Then, the expression ρx(A1,A2,...,An) (E) returns the

result of expression E under the name x, and with the attributes renamed to A1,A2, . .

.,An.

Example 8: Find the largest account balance in the bank.

Solution:

Π balance (account) – Π account .balance (σ account .balance < d.balance (account × ρd (account)))

29 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

account.account-

number

account.branch-

name

account.balance d. account-

number

d. branch-

name

d.

balance

A 01 Evening 900 A 01 Evening 900

A 01 Evening 900 A 02 Proof Road 1100

A 01 Evening 900 A 03 Main 500

A 02 Proof Road 1100 A 01 Evening 900

A 02 Proof Road 1100 A 02 Proof Road 1100

A 02 Proof Road 1100 A 03 Main 500

A 03 Main 500 A 01 Evening 900

A 03 Main 500 A 02 Proof Road 1100

A 03 Main 500 A 03 Main 500

{1100, 900, 500} - {900, 500}=1100 (Answer)

30 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 4

Relational Calculus

Tuple relational Calculus:

A query in the tuple relational calculus is expressed as:

{t | P(t)} that is, it is the set of all tuples t such that predicate P is true for t.

Example 1: Write a query in relational calculus to find the branch-name, loan-number, and

amount for loans of over 1200.

Solution:

{t | t ∈ loan ∧ t[amount] > 1200}

Suppose that we want only the loan-number attribute, rather than all attributes of the loan

relation. To write this query in the tuple relational calculus, we need to write an expression

for a relation on the schema (loan-number). We need those tuples on (loan-number) such

that there is a tuple in loan with the amount attribute > 1200. To express this request, we

need the construct “there exists” from mathematical logic.

The notation ∃ t ∈ r (Q(t)) means “there exists a tuple t in relation r such that predicate Q(t)

is true.”

Example 2: Write a query in relational calculus to find loan-number for loans of over 1200.

Solution:

{ t | ∃s ∈ loan (t[loan-number] = s[loan-number] ∧ s[amount] > 1200) }

Example 3: Write a query in relational calculus to find the names of all customers who have a

loan from the Balasore branch.

Solution:

This query is slightly more complex than the previous queries, since it involves two relations:

31 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

borrower and loan. As we shall see, however, all it requires is that we have two “there

exists” clauses in our tuple-relational-calculus expression, connected by and (∧).We write

the query as follows:

{ t | ∃s ∈ loan (t[loan-number] = s[loan-number] ∧ s[amount] > 1200) }

Example 4: Write a query in relational calculus to to find all customers who have a loan, an

account, or both at the bank.

Solution:

{t | ∃ s ∈ borrower (t[customer-name] = s[customer-name])

∨ ∃ u ∈ depositor (t[customer-name] = u[customer-name])}

Example 5: Write a query in relational calculus to find all those customers who have both an

account and a loan at the bank.

Solution:

{ t | ∃ s ∈ borrower (t[customer-name] = s[customer-name])

∧∃ u ∈ depositor (t[customer-name] = u[customer-name]) }

Example 6: Write a query in relational calculus to Find all customers who have an account at

the bank but do not have a loan from the bank.

Solution:

{t | ∃ u ∈ depositor (t[customer-name] = u[customer-name])

∧ ￢ ∃ s ∈ borrower (t[customer-name] = s[customer-name])}

32 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Formal Definition: A tuple-relational-calculus expression is of the form {t | P(t)}, where P is a

formula. Several tuple variables may appear in a formula. A tuple variable is said to be a free

variable unless it is quantified by a ∃ or ∀. Thus, in t ∈ loan ∧ ∃s ∈ customer(t[branch-name]

= s[branch-name]) and t is a free variable. Tuple variable s is said to be a bound variable.

A tuple-relational-calculus formula is built up out of atoms. An atom has one of the following

forms:

� s ∈ r, where s is a tuple variable and r is a relation (we do not allow use of the ∈

operator)

� s[x] Θ u[y], where s and u are tuple variables, x is an attribute on which s is defined, y

is an attribute on which u is defined, and Θ is a comparison operator (<, ≤, =, _=, >, ≥);

we require that attributes x and y have domains whose members can be compared

by Θ

� s[x] Θ c, where s is a tuple variable, x is an attribute on which s is defined, Θ is a

comparison operator, and c is a constant in the domain of attribute x.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ￢P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(s) is a formula containing a free tuple variable s, and r is a relation, then ∃ s ∈ r

(P1(s)) and ∀ s ∈ r (P1(s)) are also formulae.

Example 7: Let the following relation schemas be given:

R = (A,B,C)

S = (D,E, F)

Let relations r(R) and s(S) be given. Give an expression in the tuple relational calculus that is

equivalent to each of the following:

33 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

a. ΠA(r)

b. σB =17 (r)

c. r × s

d. ΠA,F (σC =D(r × s))

Solution:

a. {t | ∃ q ∈ r (q[A] = t[A])}

b. {t | t ∈ r ∧ t[B] = 17}

c. {t | ∃ p ∈ r ∃ q ∈ s (t[A] = p[A] ∧ t[B] = p[B]∧ t[C] = p[C] ∧ t[D] = q[D]

∧ t[E] = q[E] ∧ t[F] = q[F])}

d. {t | ∃ p ∈ r ∃ q ∈ s (t[A] = p[A] ∧ t[F] = q[F] ∧ p[C] = q[D]}

The Domain Relational Calculus

A second form of relational calculus, called domain relational calculus, uses domain

variables that take on values from an attributes domain, rather than values for an entire

tuple.

An expression in the domain relational calculus is of the form

{< x1, x2, . . . , xn > | P(x1, x2, . . . , xn)}

where x1, x2, . . . , xn represent domain variables. P represents a formula composed of

atoms, as was the case in the tuple relational calculus. An atom in the domain relational

calculus has one of the following forms:

o < x1, x2, . . . , xn > ∈ r, where r is a relation on n attributes and x1, x2, . . . , xn

are domain variables or domain constants.

o x Θ y, where x and y are domain variables and Θ is a comparison operator (<,

≤, =, _=, >, ≥). We require that attributes x and y have domains that can be

compared by Θ.

o x Θ c, where x is a domain variable, Θ is a comparison operator, and c is a

constant in the domain of the attribute for which x is a domain variable.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

34 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

• If P1 is a formula, then so are ￢P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(x) is a formula in x, where x is a domain variable, then ∃ x (P1(x)) and ∀ x (P1(x)) are

also formulae.

Example 1: Write a query in domain relational calculus to find the branch-name, loan-

number, and amount for loans of over $1200.

Solution:

{< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200}

Example 2: Write a query in domain relational calculus to find loan-number for loans of over

$1200.

Solution:

{< l > | ∃ a (< l, b, a > ∈ loan ∧ a > 1200)}

Example 3: Write a query in domain relational calculus to find the names of all customers

who have a loan from the Proof Road branch. Also find the loan amount.

Solution:

{< c,a > | ∃ l (< c, l >∈ borrower ∧ ∃ b (< l, b, a > ∈ loan ∧ b = “Proof Road”))}

Example 4: Write a query in domain relational calculus to to find all customers who have a

loan, an account, or both at proof road branch.

Solution:

{< c > | ∃ l (< c, l >∈ borrower

∧∃b, a (< l, b, a >∈ loan ∧ b = “Proof Road”))

∨∃a (< c,a >∈ depositor

∧∃b, n (< a, b, n >∈ account ∧ b = “Proof Road”))}

35 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 5

SQL

The basic structure of an SQL expression consists of three clauses: select, from, and where.

� The select clause corresponds to the projection operation of the relational

algebra. It is used to list the attributes desired in the result of a query.

� The from clause corresponds to the Cartesian-product operation of the relational

algebra. It lists the relations to be scanned in the evaluation of the expression.

� The where clause corresponds to the selection predicate of the relational algebra.

It consists of a predicate involving attributes of the relations that appear in the

from clause.

A typical SQL query has the form:

select A1, A2, . . .,An

from r1, r2, . . . , rm

where P

Each Ai represents an attribute, and each ri a relation. P is a predicate.

The above query is equivalent to the relational-algebra expression:

ΠA1, A2,...,An(σP (r1 × r2 × ・ ・ ・ × rm))

The enterprise that we use in the examples in this chapter, and later chapters, is a banking

enterprise with the following relation schemas:

Branch-schema = (branch-name, branch-city, assets)

Customer-schema = (customer-name, customer-street, customer-city)

Loan-schema = (loan-number, branch-name, amount)

36 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Borrower-schema = (customer-name, loan-number)

Account-schema = (account-number, branch-name, balance)

Depositor-schema = (customer-name, account-number)

The Select Clause

� The asterisk symbol * can be used to denote “all attributes.”

� The select clause may also contain arithmetic expressions involving the operators +,

−, *, and / operating on constants or attributes of tuples.

� If you want to force the elimination of duplicates, insert the keyword distinct after

select.

Example 1: Find the names of all branches in the loan relation.

Solution:

select branch-name

from loan

The Where Clause

� SQL uses the logical connectives and, or, and not—rather than the mathematical

symbols in the where clause.

� The operands of the logical connectives can be expressions involving the comparison

operators <, <=, >, >=, =, and <>.

� SQL includes a between comparison operator to simplify where clauses that specify

that a value be less than or equal to some value and greater than or equal to some

other value.

Example 2: Find the loan number of those loans with loan amounts between 90,000 and

100,000.

37 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Solution:

select loan-number

from loan

where amount between 90000 and 100000

Alternative way

select loan-number

from loan

where amount <= 100000 and amount >= 90000

The from Clause

� The from clause by itself defines a Cartesian product of the relations in the clause.

� It lists the relations to be scanned in the evaluation of the expression.

Example 3: Find all customers who have a loan from the bank, find their names, loan

numbers and loan amount.

Solution:

select customer-name, borrower.loan-number, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

Example 4: Find the customer names, loan numbers, and loan amounts for all loans at the

Proof Road branch.

Solution:

select customer-name, borrower.loan-number, amount

from borrower, loan

where borrower.loan-number = loan.loan-number and branch-name = ’ Proof Road’

38 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

The Rename Operation

� SQL provides a mechanism for renaming both relations and attributes. It uses the as

clause, taking the form:

old-name as new-name

� The as clause can appear in both the select and from clauses.

For example, if we want the attribute name loan-number to be replaced with the name loan-

id, we can rewrite the preceding query as:

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

String Operations

The most commonly used operation on strings is pattern matching using the operator like.

We describe patterns by using two special characters:

� Percent (%): The % character matches any substring.

� Underscore (): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase

characters, or vice versa. To illustrate pattern matching, we consider the following

examples:

� ’Perry%’ matches any string beginning with “Perry”.

� ’%idge%’ matches any string containing “idge” as a substring, for example,

Perryridge’, ’Rock Ridge’, ’Mianus Bridge’, and ’Ridgeway’.

� ‘- - -’ matches any string of exactly three characters.

� ‘- - -%’matches any string of at least three characters.

39 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Example 5: Find the names of all customers whose street address includes the substring

‘Main’.

Solution:

select customer-name

from customer

where customer-street like ’%Main%’

Ordering the Display of Tuples

� SQL offers the user some control over the order in which tuples in a relation are

displayed.

� The order by clause causes the tuples in the result of a query to appear in sorted

order.

Example 6: List in alphabetic order all customers who have a loan at the Perryridge branch.

Solution:

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and branch-name = ’Perryridge’

order by customer-name

Example 7: List the entire loan relation in descending order of amount.

Solution:

select *

from loan

order by amount desc, loan-number asc

40 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Set Operations

� The SQL operations union, intersect, and except operate on relations and

correspond to the relational-algebra operations U, ∩, and −.

� Like union, intersection, and set difference in relational algebra, the relations

participating in the operations must be compatible; that is, they must have the same

set of attributes.

The Union Operation

� The union operation automatically eliminates duplicates, unlike the select clause.

Example 8: find all customers having a loan, an account, or both at the bank.

Solution:

(select customer-name

from depositor)

union

(select customer-name

from borrower)

If we want to retain all duplicates, we must write union all in place of union:

(select customer-name

from depositor)

union all

(select customer-name

from borrower)

The Intersect Operation

� The intersect operation automatically eliminates duplicates

41 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Example 9: find all customers who have both a loan and an account at the bank.

Solution:

 (select distinct customer-name

from depositor)

intersect

(select distinct customer-name

from borrower)

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer-name

from depositor)

intersect all

(select customer-name

from borrower)

The Except Operation

The except operation automatically eliminates duplicates.

Example 10: Find all customers who have an account but no loan at the bank.

Solution:

 (select distinct customer-name

from depositor)

except

(select customer-name

from borrower)

If we want to retain all duplicates, we must write except all in place of except:

(select customer-name

42 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

from depositor)

except all

(select customer-name

from borrower)

Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as input

and return a single value. SQL offers five built-in aggregate functions:

Average: avg

Minimum: min

Maximum: max

Total: sum

Count: count

Example 11: Find the average account balance at the Proof Road branch.

Solution:

select avg (balance)

from account

where branch-name = ’Proof Road’

Example 12: Find the average account balance at each branch.

Solution:

select branch-name, avg (balance)

from account

group by branch-name

43 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Example 13: Find the number of depositors for each branch.

Solution:

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number

group by branch-name

44 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 6

Relational Database Design

� In general, the goal of a relational-database design is to generate a set of relation

schemas that allows us to store information without unnecessary redundancy

(repetition), yet also allows us to retrieve information easily.

� One approach is to design schemas that are in an appropriate normal form. To

determine whether a relation schema is in one of the desirable normal forms, we

need additional information about the real-world enterprise that we are modeling

with the database. In this chapter, we introduce the notion of functional

dependencies. We then define normal forms in terms of functional dependencies and

other types of data dependencies.

Question 1: Give three goals of relational-database design.

Answer: The three design goals of relational databases are to avoid

• Repetition of information

• Inability to represent information

• Loss of information.

Before we continue our discussion of normal forms, let us look at what can go wrong in a

bad database design. Among the undesirable properties that a bad design may have are:

� Repetition of information

� Inability to represent certain information

Question 2: Explain what is meant by repetition of information and inability to represent

information. Explain why each of these properties may indicate a bad relational database

design.

Answer:

• Repetition of information is a condition in a relational database where the values of one

45 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

attribute are determined by the values of another attribute in the same relation, and both

values are repeated throughout the relation. This is a bad relational database design

because it increases the storage required for the relation and it makes updating the relation

more difficult.

• Inability to represent information is a condition where a relationship exists among only a

proper subset of the attributes in a relation. This is bad relational database design because

all the unrelated attributes must be filled with null values otherwise a tuple without the

unrelated information cannot be inserted into the relation.

• Loss of information is a condition of a relational database which results from the

decomposition of one relation into two relations and which cannot be combined to recreate

the original relation. It is a bad relational database design because certain queries cannot be

answered using the reconstructed relation that could have been answered using the original

relation.

Functional Dependency

� Functional dependencies play a key role in differentiating good database designs

from bad database designs.

� A functional dependency is a type of constraint that is a generalization of the notion

of key.

We defined the notion of a superkey as follows. Let R be a relation schema. A subset K of R

is a superkey of R if, in any legal relation rI, for all pairs t1 and t2 of tuples in r such that t1 ≠

t2, then t1[K] ≠ t2[K]. That is, no two tuples in any legal relation rI may have the same value

on attribute set K.

The notion of functional dependency generalizes the notion of super key.

Definition: Consider a relation schema R, and let α ⊆ R and β ⊆ R. The functional

dependency α →β holds on schema R if, in any legal relation rI, for all pairs of tuples t1 and t2

in r such that t1[α] = t2[α], it is also the case that t1[β] = t2[β].

46 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Let us consider the below relation r:

A B C D

a1 b1 c1 d1

a1 b2 c1 d2

a2 b2 c2 d3

a2 b2 c2 d4

a3 b3 c2 d5

(Relation r)

Observe that A → C is satisfied. There are two tuples that have an A value of a1. These tuples

have the same C value—namely, c1. Similarly, the two tuples with an A value of a2 have the

same C value, c2. There are no other pairs of distinct tuples that have the same A value.

The functional dependency C → A is not satisfied, however. To see that it is not, consider the

tuples t1 = (a2, b3, c2, d3) and t2 = (a3, b3, c2, d4). These two tuples have the same C values,

c2, but they have different A values, a2 and a3, respectively. Thus, we have found a pair of

tuples t1 and t2 such that t1[C] = t2[C], but t1 [A] ≠t2 [A].

Some functional dependencies are said to be trivial because they are satisfied by all

relations. For example, A → A is satisfied by all relations involving attribute A. Reading the

definition of functional dependency literally, we see that, for all tuples t1 and t2 such that

t1[A] = t2[A], it is the case that t1[A] = t2[A]. Similarly, AB → A is satisfied by all relations

involving attribute A. In general, a functional dependency of the form α → β is trivial if β ⊆

α.

In general, a functional dependency of the form α → β is trivial if β ⊆⊆⊆⊆ α.

Questions: Why certain functional dependencies are called trivial functional dependencies?

Answer: Certain functional dependencies are called trivial functional dependencies because

they are satisfied by all relations.

47 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

In the banking example, our list of dependencies includes the following:

On Branch-schema:

branch-name →branch-city

branch-name →assets

On Customer-schema:

customer-name→ customer-city

customer-name→ customer-street

On Loan-schema:

loan-number → amount

loan-number → branch-name

On Borrower-schema:

No functional dependencies

On Account-schema:

account-number → branch-name

account-number → balance

On Depositor-schema:

No functional dependencies

Armstrong’ s Axioms

We can use the following three rules to find logically implied functional dependencies. By

applying these rules repeatedly, we can find all of F+, given F. This collection of rules is called

Armstrong’s axioms in honor of the person who first proposed it.

Reflexivity rule. If α is a set of attributes and β ⊆α, then α →β holds.

Augmentation rule. If α → β holds and γ is a set of attributes, then γα → γβ holds.

Transitivity rule. If α →β holds and β → γ holds, then α → γ holds.

48 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Proof of Armstrong’s Axioms

The definition of functional dependency is: α → β holds on R if in any legal relation r(R), for all

pairs of tuples t1 and t2 in r such that t1 [α] = t2 [α], it is also the case that t1[β] = t2[β].

Reflexivity rule: if α is a set of attributes, and β ⊆ α, then α → β.

Assume ∃ t1 and t2 such that t1[α] = t2[α]

t1[β] = t2[β] since β ⊆ α

α → β definition of FD

Augmentation rule: if α → β, and γ is a set of attributes, then γ α → γ β.

Assume ∃ t1, t2 such that t1[γ α] = t2[γ α]

t1[γ] = t2[γ] γ ⊆ γ α

t1[α] = t2[α] α ⊆ γ α

t1[β] = t2[β] definition of α → β

t1[γ β] = t2[γ β] γ β = γ ∪ β

γ α → γ β definition of FD

Transitivity rule: if α → β and β → γ, then α → γ.

Assume ∃ t1, t2 such that t1[α] = t2[α]

t1[β] = t2[β] definition of α → β

t1[γ] = t2[γ] definition of β → γ

α → γ definition of FD

Although Armstrong’s axioms are complete, it is tiresome to use them directly for the

computation of F+. To simplify matters further, we list additional rules.

Union rule. If α → β holds and α → γ holds, then α →βγ holds.

Decomposition rule. If α →βγ holds, then α → β holds and α →γ holds.

Pseudo transitivity rule. If α→β holds and γβ →δ holds, then αγ →δ holds.

49 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Proof:

Union rule.

α → β given

αα → αβ augmentation rule

α → αβ union of identical sets

α → γ is given

αβ → γ β augmentation rule

α → βγ transitivity rule

Decomposition rule:

α → βγ given

βγ → β reflexivity rule

α → β transitivity rule

βγ → γ reflexive rule

α → γ transitive rule

Pseudo transitivity rule:

 α → β given

αγ → γ β augmentation rule and set union commutativity

γ β → δ given

αγ → δ transitivity rule

Closure of a Set of Functional Dependencies

Let F be a set of functional dependencies. The closure of F, denoted by F+, is the set of all

functional dependencies logically implied by F.

Question 3: You are given a relation schema R = (A, B, C, D, E) and the set of functional

dependencies F :

A →BC

CD →E

50 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

B→D

E→ A

Find closure of F (F+).

Solution:

E→ A and A →BC, using transitivity rule we have

E→BC

CD→ E and E→A, using transitivity rule we have

CD→A

A →BC, using decomposition rule we have

A→ B and A →C

B→D and CD →E, using pseudo-transitivity rule we have

BC→E

Therefore, F+={ E→BC, CD→A, A→ B, A →C, BC→E}

Closure of Attribute Sets

Let R be a relation with set of functional dependency F. Let α be a set of attributes. The

closure of attribute set α under a set of FD is denoted by α+.

How to find α+

1. Set Result= α

2. Repeat until Result does not change

For all FDs X→Y, if X⊆ Result

Result=Result U Y

Question 4: Suppose you are given a relation schema R = (A, B, C, G, H, I) and the set of

functional dependencies:

A →B

A →C

CG→ H

CG→ I

51 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

B → H

Find out closure of A+, CG+ and B+.

Solution:

A+=ABCH

CG+=CGHI

B+=BH

Prime attribute and non-prime attribute

An attribute in a relation schema R is a prime attribute if A is a part of any candidate key of

the relation.

An attribute in a relation schema R is a non-prime attribute if A is not a part of any candidate

key of the relation.

Question 5: Given R (A, B, C, D, E, H) and F= {A→BC, CD→E, E→C, AH→D}. Find candidate

key, prime attributes and non-prime attributes of R.

Solution:

A+ =ABC

CD+=CDE

E+=EC

AH+=ABCDEH=R

Hence AH is candidate key.

The attributes A and H are prime attributes and the attributes B, C, D, E are non prime

attribute.

52 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

1st Normal Form (1 NF): [Remove multivalued attributes]

� A relation schema R is in first normal form (1NF) if the domains of all attributes of R

are atomic. A domain is atomic if elements of the domain are considered to be

indivisible units.

� A set of names is an example of a non atomic value. For example, if the schema of a

relation employee included attribute children whose domain elements are sets of

names, the schema would not be in first normal form.

� Composite attributes, such as an attribute address with component attributes street

and city, also have non atomic domains.

[TABLE: Student]

Name Roll Branch Subject

Jayashree 001 CSE Java, C, DBMS

Shibani 002 CSE C, C++

Rupashree 003 EEE C, DBMS

The above table is not in 1st Normal form as the attribute subject is not atomic. So the

correct table in 1st Normal form will be:

[TABLE: Student]

Name Roll Branch Subject

Jayashree 001 CSE Java

Jayashree 001 CSE C

Jayashree 001 CSE DBMS

Shibani 002 CSE C

Shibani 002 CSE C++

Rupashree 003 EEE C

Rupashree 003 EEE DBMS

53 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

2nd Normal Form (2 NF): [Remove partial dependencies]

A relation schema R is in second normal form (2NF) if it is in 1NF and every non-primary key

attribute is fully functionally dependent on the primary key.

Full and Partial Functional Dependency:

If A and B are attributes of a relation, A → B is fully dependent if some attribute is removed

from A, then the dependency do not hold anymore. (or when all non-key attributes are

dependent on the key attribute)

A → B is partially dependent if some attribute is removed from A and the dependency still

holds.

3rd Normal Form (3 NF): [Remove transitive dependencies]

A relation that is in 1NF and 2NF, and in which no non-primary key attribute is transitively

dependent on the primary key i.e. there do not exist any transitive dependencies.

or

A relation schema R is in third normal form (3NF) with respect to a set F of functional

dependencies if, for all functional dependencies in F+ of the form α → β, where α ⊆ R and β ⊆

R, at least one of the following holds:

• α → β is a trivial functional dependency.

• α is a superkey for R.

• Each attribute A in β − α is contained in a candidate key for R.

Transitive dependency: A condition where A, B and C are attributes of a relation such that if

A → B and B → C, then C is transitively dependent on A via B (provided that A is not

functionally dependent on B or C).

Question 6: Given R(A, B, C, D, E, F, G,H) with FD (A →→→→ C, B →→→→ D,C →→→→ E, D →→→→ F, AB →→→→ G, G →→→→ E).

Decompose R using 2NF and 3NF.

54 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Solution:

Primary key is AB because AB+=R

Using 2NF R is decomposed into

R1(A, C, E) with FDs F1(A→ C, C→ E)

R2(B, D, F) with FDs F2(B→ D, D→ F)

R3(AB, G, E) with FDs F3(AB→ G, G→ E)

Using 3NF R1 is decomposed into

R11(A, C) with FDs F1(A→ C)

R12(A, E) with FDs F1(A→ E)

Using 3NF R2 is decomposed into

R21(B, D) with FDs F1(B→ D)

R22(B, F) with FDs F1(B→ F)

Using 3NF R3 is decompose into

R31(A, B, G) with FDs F1(AB→ G)

R32(A, B, E) with FDs F1(AB→ E)

Boyce–Codd Normal Form (BCNF)

A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all

functional dependencies in F+ of the form α → β, where α ⊆ R and β ⊆ R, at least one of the

following holds:

• α → β is a trivial functional dependency (that is, β ⊆ α).

• α is a superkey for schema R.

55 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Decomposition using BCNF:

Find at least one non trivial functional dependency α → β, where α is not a super key. Then

the relation R can be decomposed into

1. α U β

2. R - (β- α)

4th Normal Form (4 NF)

A relation schema R is in fourth normal form (4NF) with respect to a set D of functional and

multivalued dependencies if, for all multivalued dependencies in D+ of the form α →→ β,

where α ⊆ R and β ⊆ R, at least one of the following holds:

• α →→ β is a trivial multivalued dependency.

• α is a superkey for schema R.

Multi-valued dependency:

Let R be a relation schema and let α ⊆ R and β ⊆ R. The multivalued dependency α →→ β holds

on R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such that t1[α] = t2[α],

there exist tuples t3 and t4 in r such that:

t1[α] = t2[α] = t3[α] = t4[α]

t3[β] = t1[β]

t3[R − β] = t2[R − β]

t4[β] = t2[β]

t4[R − β] = t1[R − β]

56 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 7

Query processing

� Query processing refers to the range of activities involved in extracting data from a

database.

� The activities include translation of queries in high-level database languages into

expressions that can be used at the physical level of the file system, a variety of

query-optimizing transformations, and actual evaluation of queries.

� The steps involved in query processing are:

1. Parsing and translation

2. Optimization

3. Evaluation

57 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Before query processing can begin, the system must translate the query into a usable form.

A language such as SQL is suitable for human use, but is ill-suited to be the system’s internal

representation of a query. A more useful internal representation is one based on the

extended relational algebra.

Thus, the first action the system must take in query processing is to translate a given query

into its internal form. This translation process is similar to the work performed by the parser

of a compiler. In generating the internal form of the query, the parser checks the syntax of

the user’s query, verifies that the relation names appearing in the query are names of the

relations in the database, and so on. The system constructs a parse-tree representation of

the query, which it then translates into a relational-algebra expression. If the query was

expressed in terms of a view, the translation phase also replaces all uses of the view by the

relational-algebra expression that defines the view.

As an illustration, consider the query

select balance

from account

where balance < 2500

This query can be translated into either of the following relational-algebra expressions:

• σbalance<2500 (Πbalance (account))

• Πbalance (σbalance<2500 (account))

58 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 8

Transaction

� A transaction is a unit of program execution that accesses and updates various data

items.

� Usually, a transaction is initiated by a user program written in a high-level data-

manipulation language or programming language (for example, SQL, COBOL, C, C++,

or Java), where it is delimited by statements (or function calls) of the form begin

transaction and end transaction.

� The transaction consists of all operations executed between the begin transaction

and end transaction.

ACID Properties

To ensure integrity of the data, we require that the database system maintain the following

properties of the transactions:

1. Atomicity. A transaction is said to be atomic if all the operation of the transaction are

executed at once or none of them is executed.

2. Consistency. A database is said to be consistent if a transaction is executed in a isolated

manner.

3. Isolation. Even though multiple transactions may execute concurrently, the system

guarantees that, for every pair of transactions Ti and Tj, it appears to Ti that either Tj finished

execution before Ti started, or Tj started execution after Ti finished. Thus, each transaction

is unaware of other transactions executing concurrently in the system.

4. Durability. After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from the first

letter of each of the four properties.

59 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Let Ti be a transaction that transfers 50 from account A to account B. This transaction can be

defined as:

Read (A);

A := A − 50;

Write (A);

read(B);

B := B + 50;

Write (B).

read (X), which transfers the data item X from the database to a local buffer belonging to

the transaction that executed the read operation.

write (X), which transfers the data item X from the the local buffer of the transaction that

executed the write back to the database.

 Let us now consider each of the ACID requirements. (For ease of presentation, we consider

them in an order different from the order A-C-I-D).

Consistency: The consistency requirement here is that the sum of A and B be unchanged by

the execution of the transaction. Without the consistency requirement, money could be

created or destroyed by the transaction! It can be verified easily that, if the database is

consistent before an execution of the transaction, the database remains consistent after the

execution of the transaction. Ensuring consistency for an individual transaction is the

responsibility of the application programmer who codes the transaction.

Atomicity: Suppose that, just before the execution of transaction Ti the values of accounts A

and B are 1000 and 2000, respectively. Now suppose that, during the execution of

transaction Ti, a failure occurs that prevents Ti from completing its execution successfully.

Examples of such failures include power failures, hardware failures, and software errors.

60 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Durability: Once the execution of the transaction completes successfully, and the user who

initiated the transaction has been notified that the transfer of funds has taken place, it must

be the case that no system failure will result in a loss of data corresponding to this transfer

of funds. The durability property guarantees that, once a transaction completes successfully,

all the updates that it carried out on the database persist, even if there is a system failure

after the transaction completes execution.

Isolation: Even if the consistency and atomicity properties are ensured for each transaction,

if several transactions are executed concurrently, their operations may interleave in some

undesirable way, resulting in an inconsistent state. For example, as we saw earlier, the

database is temporarily inconsistent while the transaction to transfer funds from A to B is

executing, with the deducted total written to A and the increased total yet to be written to

B. If a second concurrently running transaction reads A and B at this intermediate point and

computes A+B, it will observe an inconsistent value. Furthermore, if this second transaction

then performs updates on A and B based on the inconsistent values that it read, the

database may be left in an inconsistent state even after both transactions have completed.

State Diagram of a Transaction

Terminated

61 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Question 1: During its execution, a transaction passes through several states, until it finally

commits or aborts. List all possible sequences of states through which a transaction may

pass. Explain why each state transition may occur.

Answer: The possible sequences of states are:-

a. active→→→→ partially committed →→→→ committed. This is the normal sequence a successful

transaction will follow. After executing all its statements it enters the partially committed

state. After enough recovery information has been written to disk, the transaction finally

enters the committed state.

b. active →→→→ partially committed →→→→ aborted. After executing the last statement of the

transaction, it enters the partially committed state. But before enough recovery information

is written to disk, a hardware failure may occur destroying the memory contents. In this case

the changes which it made to the database are undone, and the transaction enters the

aborted state.

c. active →→→→ failed →→→→ aborted. After the transaction starts, if it is discovered at some point that

normal execution cannot continue (either due to internal program errors or external errors),

it enters the failed state. It is then rolled back, after which it enters the aborted state.

Concurrent Executions

� Transaction-processing systems usually allow multiple transactions to run

concurrently. Allowing multiple transactions to update data concurrently causes

several complications with consistency of the data.

� Ensuring consistency in spite of concurrent execution of transactions requires extra

work; it is far easier to insist that transactions run serially—that is, one at a time,

each starting only after the previous one has completed.

� The motivation for using concurrent execution in a database is essentially the same

as the motivation for using multiprogramming in an operating system.

62 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� There are two good reasons for allowing concurrency:

1. Improved throughput and resource utilization

2. Reduced waiting time.

Conflict Serializability

Let us consider a schedule S in which there are two consecutive instructions Ii and Ij, of

transactions Ti and Tj , respectively (i _= j). If Ii and Ij refer to different data items, then we

can swap Ii and Ij without affecting the results of any instruction in the schedule. However, if

Ii and Ij refer to the same data item Q, then the order of the two steps may matter. Since we

are dealing with only read and write instructions, there are four cases that we need to

consider:

1. Ii = read(Q), Ij = read(Q). The order of Ii and Ij does not matter, since the same value of Q is

read by Ti and Tj , regardless of the order.

2. Ii = read(Q), Ij = write(Q). If Ii comes before Ij, then Ti does not read the value of Q that is

written by Tj in instruction Ij. If Ij comes before Ii, then Ti reads the value of Q that is written

by Tj. Thus, the order of Ii and Ij matters.

3. Ii = write(Q), Ij = read(Q). The order of Ii and Ij matters for reasons similar to those of the

previous case.

4. Ii = write(Q), Ij = write(Q). Since both instructions are write operations, the order of these

instructions does not affect either Ti or Tj . However, the value obtained by the next read(Q)

instruction of S is affected, since the result of only the latter of the two write instructions is

preserved in the database. If there is no other write (Q) instruction after Ii and Ij in S, then

the order of Ii and Ij directly affects the final value of Q in the database state that results

from schedule S.

View Serializability

Consider two schedules S and S’, where the same set of transactions participates in both

schedules. The schedules S and S’ are said to be view equivalent if three conditions are met:

63 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then

transaction Ti must, in schedule S’, also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if that value

was produced by a write(Q) operation executed by transaction Tj , then the read(Q)

operation of transaction Ti must, in schedule S’, also read the value of Q that was produced

by the same write(Q) operation of transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final write (Q) operation in

schedule S must perform the final write (Q) operation in schedule S’.

Question: Since every conflict-serializable schedule is view serializable, why do we

emphasize conflict serializability rather than view serializability?

Answer: Most of the concurrency control protocols (protocols for ensuring that only

serializable schedules are generated) used in practise are based on conflict serializability—

they actually permit only a subset of conflict serializable schedules. The general form of view

serializability is very expensive to test, and only a very restricted form of it is used for

concurrency control.

Transaction Definition in SQL

A data-manipulation language must include a construct for specifying the set of actions that

constitute a transaction. The SQL standard specifies that a transaction begins implicitly.

Transactions are ended by one of these SQL statements:

• Commit work commits the current transaction and begins a new one.

• Rollback work causes the current transaction to abort.

There a simple and efficient method for determining conflict serializability of a schedule.

Consider a schedule S. Then construct a directed graph, called a precedence graph, from S. This

graph consists of a pair G = (V, E), where V is a set of vertices and E is a set of edges. The set of

64 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

vertices consists of all the transactions participating in the schedule. The set of edges consists

of all edges Ti →Tj for which one of three conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).

2. Ti executes read(Q) before Tj executes write(Q).

3. Ti executes write(Q) before Tj executes write(Q).

65 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 9

Concurrency Control

� Concurrent control is a technique to ensure that concurrent execution of transaction

must results in a consistent database.

� It uses certain protocols to ensure the serializability of a schedule of concurrent

executing transactions.

� Some of these protocols are:

� Lock based protocol

� Time stamp based protocol

Lock-Based Protocols

One way to ensure serializability is to require that data items be accessed in a mutually

exclusive manner; that is, while one transaction is accessing a data item, no other

transaction can modify that data item. The most common method used to implement this

requirement is to allow a transaction to access a data item only if it is currently holding a lock

on that item.

Lock

� It is a variable associated with a data item X that reflects the status of data item X

with respect to possible operations that can be applied. A data item X can be locked

in two modes:

Shared lock

If a transaction T has obtained shared mode lock, then T can read but cannot write. It

is denoted by S.

Exclusive lock

If a transaction T has obtained exclusive mode lock, then T can both read and write. It

is denoted by X.

66 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� A transaction requests a shared lock on data item Q by executing the lock-S (Q)

instruction. Similarly, a transaction requests an exclusive lock through the lock-X (Q)

instruction. A transaction can unlock a data item Q by the unlock (Q) instruction.

� Compatible Function: Let A and B represent arbitrary lock modes. Suppose that a

transaction Ti requests a lock of mode A on item Q on which transaction Tj (Ti ≠ Tj)

currently holds a lock of mode B. If transaction Ti can be granted a lock on Q

immediately, in spite of the presence of the mode B lock, then we say mode A is

compatible with mode B. Such a function can be represented conveniently by a

matrix.

� An element comp (A, B) of the matrix has the value true if and only if mode A is

compatible with mode B.

 S X

S True False

X False False

� To access a data item, transaction Ti must first lock that item. If the data item is

already locked by another transaction in an incompatible mode, the concurrency

control manager will not grant the lock until all incompatible locks held by other

transactions have been released. Thus, Ti is made to wait until all incompatible locks

held by other transactions have been released.

� Example:

T1:
lock-X(B);
read(B);
B := B − 50;
write(B);
unlock(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock (A).

T2:
lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display (A + B).

67 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

� Transaction Ti may unlock a data item that it had locked at some earlier point. Note

that a transaction must hold a lock on a data item as long as it accesses that item.

Moreover, for a transaction to unlock a data item immediately after its final access of

that data item is not always desirable, since serializability may not be ensured.

T1

T2

Concurrency-

Control Manager

lock-X(B)

read(B)

B := B 50

write(B)

unlock(B)

lock-X(A)

read(A)

A := A + 50

write(A)

unlock(A)

lock-S(A)

read(A)

unlock(A)

lock-S(B)

read(B)

unlock(B)

display(A + B)

grant-X(B, T1)

grant-S(A, T2)

grant-S(B, T2)

grant-X(A, T2)

Granting of Locks

When a transaction requests a lock on a data item in a particular mode, and no other

transaction has a lock on the same data item in a conflicting mode, the lock can be granted.

However, care must be taken to avoid the following scenario. Suppose a transaction T2 has a

shared-mode lock on a data item, and another transaction T1 requests an exclusive-mode

lock on the data item. Clearly, T1 has to wait for T2 to release the shared-mode lock.

68 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Meanwhile, a transaction T3 may request a shared-mode lock on the same data item. The

lock request is compatible with the lock granted to T2, so T3 may be granted the shared-

mode lock. At this point T2 may release the lock, but still T1 has to wait for T3 to finish. But

again, there may be a new transaction T4 that requests a shared-mode lock on the same

data item, and is granted the lock before T3 releases it. In fact, it is possible that there is a

sequence of transactions that each requests a shared-mode lock on the data item, and each

transaction releases the lock a short while after it is granted, but T1 never gets the exclusive-

mode lock on the data item. The transaction T1 may never make progress, and is said to be

starved.

The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This protocol

requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed.

Once the transaction releases a lock, it enters the shrinking phase, and it can issue no more

lock requests.

Timestamps base Protocol

Timestamps:

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted by

TS(Ti). This timestamp is assigned by the database system before the transaction Ti starts

execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new transaction Tj

enters the system, then TS(Ti) < TS(Tj). There are two simple methods for implementing this

scheme:

69 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

1. Use the value of the system clock as the timestamp; that is, a transaction’s timestamp is

equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been assigned; that

is, a transaction’s timestamp is equal to the value of the counter when the transaction

enters the system.

The timestamps of the transactions determine the serializability order. Thus, if TS(Ti) < TS(Tj

), then the system must ensure that the produced schedule is equivalent to a serial schedule

in which transaction Ti appears before transaction Tj .

To implement this scheme, we associate with each data item Q two timestamp values:

• W-timestamp (Q) denotes the largest timestamp of any transaction that executed write

(Q) successfully.

• R-timestamp (Q) denotes the largest timestamp of any transaction that executed read (Q)

successfully.

These timestamps are updated whenever a new read (Q) or write (Q) instruction is

executed.

DeadLock

� A system is in a deadlock state if there exist a set of transactions such that every

transaction in the set is waiting for another transaction in the set.

� There are two principal methods for dealing with the deadlock problem. We can use

a deadlock prevention protocol to ensure that the system will never enter a deadlock

state. Alternatively, we can allow the system to enter a deadlock state, and then try

to recover by using a deadlock detection and deadlock recovery scheme.

Deadlock Prevention:

Two different deadlock prevention schemes are:

70 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

wait–die

The wait–die scheme is a non-preemptive technique. When transaction Ti requests a data

item currently held by Tj , Ti is allowed to wait only if it has a timestamp smaller than that of

Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled back (dies).

For example, suppose that transactions T22, T23, and T24 have timestamps 5, 10, and 15,

respectively. If T22 requests a data item held by T23, then T22 will wait. If T24 requests a data

item held by T23, then T24 will be rolled back.

wound–wait

The wound–wait scheme is a preemptive technique. It is a counterpart to the wait–die

scheme. When transaction Ti requests a data item currently held by Tj , Ti is allowed to wait

only if it has a timestamp larger than that of Tj (that is, Ti is younger than Tj). Otherwise, Tj is

rolled back (Tj is wounded by Ti).

Returning to our example, with transactions T22, T23, and T24, if T22 requests a data item

held by T23, then the data item will be preempted from T23, and T23 will be rolled back. If

T24 requests a data item held by T23, then T24 will wait.

Deadlock Detection and Recovery

If a system does not employ some protocol that ensures deadlock freedom, then a detection

and recovery scheme must be used. An algorithm that examines the state of the system is

invoked periodically to determine whether a deadlock has occurred. If one has, then the

system must attempt to recover from the deadlock. To do so, the system must:

o Maintain information about the current allocation of data items to

transactions, as well as any outstanding data item requests.

o Provide an algorithm that uses this information to determine whether the

system has entered a deadlock state.

o Recover from the deadlock when the detection algorithm determines that a

deadlock exists.

71 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Chapter 10

Database Recovery System

There are various types of failure that may occur in a system, each of which needs to be

dealt with in a different manner.

Transaction failure. There are two types of errors that may cause a transaction to fail:

� Logical error. The transaction can no longer continue with its normal execution

because of some internal condition, such as bad input, data not found, overflow, or

resource limit exceeded.

� System error. The system has entered an undesirable state (for example, deadlock),

as a result of which a transaction cannot continue with its normal execution. The

transaction, however, can be reexecuted at a later time.

 System crash. There is a hardware malfunction, or a bug in the database software or the

operating system, that causes the loss of the content of volatile storage, and brings transaction

processing to a halt. The content of nonvolatile storage remains intact, and is not corrupted.

Disk failure. A disk block loses its content as a result of either a head crash or failure during a

data transfer operation. Copies of the data on other disks, or archival backups on tertiary

media, such as tapes, are used to recovers from the failure.

Storage Types

� Volatile storage. Information residing in volatile storage does not usually survive

system crashes. Examples of such storage are main memory and cache memory.

Access to volatile storage is extremely fast, both because of the speed of the

memory access itself, and because it is possible to access any data item in volatile

storage directly.

� Nonvolatile storage. Information residing in nonvolatile storage survives system

crashes. Examples of such storage are disk and magnetic tapes. Disks are used for

online storage, whereas tapes are used for archival storage.

� Stable storage. Information residing in stable storage is never lost.

72 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Storage Types

Database recovery is a technique that restores the database to the most recent consistent

state that exists before the database failure.

Log-Based Recovery

The most widely used structure for recording database modifications is the log. The log is a

sequence of log records, recording all the update activities in the database.There are several

types of log records. An update log record describes a single databasewrite. It has these

fields:

o Transaction identifier is the unique identifier of the transaction that

performed the write operation.

o Data-item identifier is the unique identifier of the data item written. Typically,

it is the location on disk of the data item.

o Old value is the value of the data item prior to the write.

o New value is the value that the data item will have after the write.

Other special log records exist to record significant events during transaction processing,

such as the start of a transaction and the commit or abort of a transaction. We denote the

various types of log records as:

• <Ti start>. Transaction Ti has started.

• <Ti, Xj, V1, V2>. Transaction Ti has performed a write on data item Xj . Xj had value V1 before

the write, and will have value V2 after the write.

• <Ti commit>. Transaction Ti has committed.

• <Ti abort>. Transaction Ti has aborted.

73 Database System Concepts by Er. Sourav Kumar Giri, E-mail:sourav.giri4@gmail.com.

Deferred Database Modification

� The deferred-modification technique ensures transaction atomicity by recording all

database modifications in the log, but deferring the execution of all write operations

of a transaction until the transaction partially commits.

� When a transaction partially commits, the information on the log associated with the

transaction is used in executing the deferred writes. If the system crashes before the

transaction completes its execution, or if the transaction aborts, then the

information on the log is simply ignored.

� The execution of transaction Ti proceeds as follows. Before Ti starts its execution, a

record <Ti start> is written to the log. A write(X) operation by Ti results in the writing

of a new record to the log. Finally, when Ti partially commits, a record <Ti commit> is

written to the log.

Immediate Database Modification

� The immediate-modification technique allows database modifications to be output to

the database while the transaction is still in the active state. Data modifications

written by active transactions are called uncommitted modifications.

� Before a transaction Ti starts its execution, the system writes the record <Ti start> to

the log. During its execution, any write(X) operation by Ti is preceded by the writing

of the appropriate new update record to the log. When Ti partially commits, the

system writes the record <Ti commit> to the log.

