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Finite Element Analysis

v’ By using energy principles, Argyris and Kelsey developed matrix structural analysis
methods in 1954. This development illustrated the important role that energy principles
would play in the finite element method.

v The term finite element was first introduced by Clough in 1960 in the plane stress
analysis and he used both triangular and rectangular elements in that analysis.

v Most of the finite element work upto early 1960s dealt with small strains and small
displacements, elastic material behaviour and static loadings. In 1961, Turner
considered large deflection and thermal analysis problems. In 1962, Gallagher
introduced material non-linearities problems, whereas buckling problems were initially
treated by Gallagher and Padlog in 1963. In 1968, Zinkiewicz extended the method to
visco elasticity problems. :

v Weighted residual methods was first introduced by Szabo and Lee in 1969 for
structural analysis and then by Zinkiewicz and Parekh in 1970 for transient field
problems.

v During the decades of the 1960s and 1970s, the finite element method was extended to
applications in shell bending, plate bending, heat transfer analysis, fluid flow analysis
and general three dimensional problems in structural analysis.

v’ From the early 1950s to present, enormous advances have been made in the application
of finite element method to solve complicated engineering problems. It is curious to
note that the present day finite element method does not have its root in one discipline.
The mathematicians continue to put the finite elemerit method on sound theoretical
ground whereas the engineers continue to find interesting extensions in various
branches of engineering. These concurrent developments have made the finite element
method as one of the most powerful approximate methods.

1.3. GENERAL STEPS OF THE FINITE ELEMENT ANALYSIS
v This section presents the general procedure of finite element analysis. For simplicity’s
sake, we will consider only the structural problems.
v The following two general methods are associated with the finite element analysis.
They are:
(i) Force method.
(ii) Displacement or stiffness method.
v In force method, internal forces are considered as the unknowns of the problem. In
displacement or stiffness method, displacements of the nodes are considered as the
unknowns of the problem.

v Among these two approaches, displacement method is more desirable because its
formulation is simpler for most structural analysis problems. So, a vast majority of
general purpose finite element programs have used the displacement formulation for
solving structural problems.
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¥ We now present the steps along with explanations used in the finite element method
formulation.

Step I: Discretization of Structure

The art of subdividing a structure into a convenient number of smaller elements is known
as discretization.

Smaller elements are classified as follows:

(i) One dimensional elements. (if) Two dimensional elements.

(iv) Axisymmetric elements.

(i) One dimensional elements: A bar and beam elements are considered as one
dimensional elements. The simplest line element also known as linear element has two nodes,
one at each end as shown in Fig.1.2.

1+ +2

Fig. 1.2. Bar element

(i) Three dimensional elements.

(ii) Two di ional el Triangular and rectangular elements are considered as
two dimensional elements. These elements are loaded by forces in their own plane. The
simplest two dimensional elements have corner nodes as shown in Fig.1.3.

3 4 3
1 2 1 2
Triangular element Rectangular element

Fig. 1.3. Simple two dimensional elements
(iij) Three dimensional
elements: The most common
three dimensional elements are 8 7
tetrahedral and  hexahedral 4
(Brick)  elements.  These
elements are used for three y 6
dimensional stress analysis 5
problems. The simplest three | ! 2 1 o2
dimensional elements have | Tetrahedral element Hexahedral element
corner nodes as shown in

Fig.1.4. Fig. 1.4. Simple three dimensional elements
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(iv) Axisymmetric elements: The axisymmetric
element is developed by rotating a triangle or
quadrilateral about a fixed axis located in the plane of the
clement through 360°. It is shown in Fig.1.5. When the
geometry and loading of the problems are axisymmetric,
these elements are used.

Step 2; Numbering of Nodes and Elements
The nodes and elements should be numbered after
discretizaton process. The numbering process is most
important since it decide the size of the stiffness matrix
and it leads the reduction of memory requirement. While
numbering the nodes, the following condition should be
satisfied.
{ Maximum } { Minimum
node number ] ~ | node number
It is explained in the Fig.1.6(a) and (b).

Longer Side Numbering Process:

} = Minimum
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Fig. 1.5. Axisymmetric element
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[Note: Number with circle denotes element.

Considering element (3),
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Fig. 1.6. (b)
Considering the same element (3).
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9 13
Maximum node number = 14
Minimum node number = 9
Difference = 5 .. (1.2)
From equation (1.1) and (1.2), we came to know, shorter side numbering process is
followed in the finite element analysis and it reduces the memory requirements.
Step 3: Selection of a Displacement Function or Interpolation Function
v It involves choosing a displacement function within each element. Polynomial of
Jinear, quadratic and cubic form are frequently used as displacement functions because
they are simple to work within finite element formulation.

¢ (x) o(x)

Exact solution Exact solution

je—— Element ———|

(a) Linear approximation

je———Element ———]|

(b) Quadratic approximation

Fig. 1.7. Polynomial approximation in one dimension
¥ The polynomial type of interpolation functions are mostly used due to the following
reasons. )
1. Itis easy to formulate and computerize the finite element equations.
2. It is easy to perform differentiation or integration.
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3. The accuracy of the results can be improved by increasing the order of the
polynomial.
Fig.1.7 shows the polynomial approximation in one dimension.
Let us consider ¢(x) is a field variable.
Case (i): Linear Polynomial:
One dimensional problem ¢(x) = agtax
Two dimensional problem ¢(x, y) = aytayxtayy
Three dimensional problem ¢(x, y, z) = atayxtayytasz
Case (ii): Quadratic i’olynomial:
One dimensional problem ¢(x) = ay+a, x +a, x?
Two dimensional problem ¢(x, y) = qytayxtayy+azxlta,yl+ asxy
Three dimensional problem ¢(x,y,z) = agtayx+ayy+asz+a,x2+asy?
tagzltagxytagyz+agxz
Step 4: Define the material behaviour by using Strain-Displacement and Stress-Strain
Relationships

v Strain-Displacement and Stress-Strain relationships are necessary for deriving the
equations for each finite element.

v In case of one dimensional deformation, the strain-displacement relationship is given
by,
du

=% .. (13)

where, u — Displacement field variable along x direction,

€

e —> Strain.
The stress-strain relationship is given by,
6 = Ee .. (14)
where, © — Stress in x direction.
E — Modulus of elasticity or Young’s modulus.

Step 5: Derivation of element stiffness matrix and equations:
The finite element equation is in matrix form as,

F, by kg ks ok, uy
F, by ky ko Ry, uy

Fyp=| K by by o K, u3

F, [ A u

‘nh
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In compact matrix form as,
A {Fe} = [k2] {ue}

where, e isa Element, { F } is the vector of element nodal forces, [ k ] is the
element stiffness matrix and { u } is the element displacement vector.

This equation can be derived by any one of the following methods.

() Direct Equilibrium Method: This method is much easier to apply for line or one
dimensional elements. -

(ii) Variational Method: This method is most easily adaptable to the determination of
element equations for complicated elements (i.e., element having large number of degrees of
freedom) like axisymmetric stress element, plate bending element and two or three

q 1

C jonal solid stress

(iii) Weighted Residual Method: This method is. (Galerkin’s method) useful for
developing the element equations in thermal analysis problems. They are especially useful
when a functional such as potential energy is not readily available.

Step 6: A ble the el quations to obtain the global or total equations:

The individual element equations obtained in step 5 are added together by using a method
of superposition i.e., direction stiffness method. The final assembled or global equation which
is in the form of

{F} = [K]{u} ... (1.5)
where, {F} — Global force vector.
[K] — Global stiffness matrix.

{u#} — Global displacement vector.

Step 7: Applying boundary conditions:

From equation (1.5), we know that, global stiffness matrix [K ] is a singular matrix
because its determinant is equal to zero. In order to remove this singularity problem, certain
boundary conditions are applied so that the structure remains in place instead of moving as a

rigid body. The global equation (1.5) to be modified to account for the boundary conditions
of the problem.

/Step 8: Solution for the unknown displacements:

A set of simultaneous algebraic equations formed in step 6 can be written in expanded
matrix form as follows:
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Fy by ky ko By, )
F, by by ko, )
F by ky ko k, U
Fopo= ky kg ky ok, Uy

Fn knl kn2 kn3 -k

These equation can be solved and unknown displacements { u } are calculated by. using
Gaussian elimination method or Gauss-Seidel method.

Step 9: Computation of the el strains and stresses from the nodal displacements, fu}:

In structural stress analysis problem, stress and strain are important factors. From the
solution of displacement vector { u }, stress and strain value can be calculated.
In case of one dimensional deformation, the strain-displacement relationship is given by,

di
';;‘? [From equation (1.3)]

Strain, e
ot
X=X
where, u; andu, are displacement at node 1 and 2.
Xy~x; = Actual length of the element.
From that, we can find the strain value.
By knowing the strain, stress value can be calculated by using the relation,
Stress, 0 = Ee
where, E — Young’s Modulus.
e > vStréin.

Step 10: Interpret the results (Post Processing):

Analysis and evaluation of the solution results is referred to as post-processing. Post
processor computer programs help the user to interpret the results by displaying them in
graphical form. :

Steps 1 to 10 are'summarized as follows:

Numbering of
- nodes-and elements

!

Selection of
displacement function

!

Define the material
behaviour

)

Derivation-of element
stifiness matrix and equations

)

Assemble the element
equations

!

Applying boundary
conditions

I

Solution of unknown
displacements

!

Computation of the element
stresses and strains

Interpret the results Post processing

[—> Preprocessing

> Analysis

1.4.1. Introduction

In this chaﬁtcr, we are going to learn about discretization, node, assembly, system efc. To
make this much easier to understand, let us compare these words with the parts over human
body. Apart from flesh, our body consists of bones. They are hands, legs, fingers, thigh
bones, etc. These parts are connected together at different places, so that when movement
takes place, we do not feel any pain. Nature has assembled in such a way that every human
being is able to sustain certain amount of load without experiencing stain.

Similarly any structure like an automobile, ship, aeroplane, efc., consists of several
components assembled together.
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Now let us study about ‘Element’, The characteristics of an element are as follows:
(i) Itis a small portion of a system.
(if) It has definite shape.
(iif) 1t should have minimum two nodes.
(iv) Nodes are placed where connection is made to another element.

(v) Loads act only at the nodes.

Node, 1 L + No;}

Fig. 1.8. Truss element

Examples:

Node

AVATYIVN

(a) Various elements

(b) Various elements asszmbled together

JavaNv

(c) Imposition of boundary condition

(d) Structure carrymg a load

Fig. 1.9.
1.4.2. Discretization
The art of subdividing a structure into a convenient number of smaller components is
known as Discretization. These smaller components are then put together. The process of

uniting the various elements together is called Assemblage. The blage of such el
then represents the original body.

Discretization can be classified as follows:
(i) Natural.
(if) Artificial (continuum).

Introduction |13

1.4.3. Natural Discretization

In structural analysis, a truss is
considered as a natural system. The
various members of the truss constitute the ) > Fite
elements. These elements are connected at element
various joints known as nodes.

Nodal Points: Each kind of finite
element has a specific structural shape and
is interconnected with the adjacent
elements by nodal points or nodes.

Ry — > Node

‘

Ro

Fig, 1.10. Natural discretization of truss
Nodal forces: The forces that act at each nodal point are called nodal forces.

Degrees of freedom: When the force or reaction act at nodal point, node is subjected to
deformation. This deformation includes displacements, rotations, and/or strains. These are
collectively known as degrees of freedom or slmply we can say nodal displacement is called
degrees of freedom.

In Fig.1.10, the truss consists of 9 elements and 6 nodes. There are four freely moving and

two extreme constrained nodes. The truss is a natural system as there is no possibility elther
to increase or decrease the number of elements and the nodes.

1.4.4. Artificial Discretization (Continuum)
Continuum is generally considered to be a single mass of material as found in a forging,
concrete dam, deep beam, plate and so on.
Unlike the truss element which is physically present in the truss, in a continuum, the
following three elements exist only in our imagination.
1. Triangular element.
2. Rectangular element.
3. Quadrilateral element:
They are shown in Fig.1.11.

3 ) 4 3 3
4
1 2 1 2 1 2
L. Triangular element 2. Rectangular element 3. Quadrilateral element

Fig. L11.
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Discretization using triangular element is shows in Fig.1.12 & 1.13.

Nodal loads

Typical
node

Fig. 1.12. Discretization using iriangular elements

A A

(b) Discretization wsing triangular elements

(a) Gravity dram

Fig. L13.

Fig.1.14 shows a deep beam. In Fig.1.15, it is shown how it is discretized using simple
rectangular elements.
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Fig. 1.14. Deep beam

Fig. 1.15. Déep beam discretization using
rectangular elements
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Fig.1.16 (a) shows a planar continuum subjected to unifoxp]ﬁétributed load on the top.

Fig. 1.16 (b), the continuum is discretized into eight friangular elements. The discretization
shown is only one way. We can subdivide the continuum into triangular elements in a number
of ways. Alternative way is shown in Fig.1.17.

2kN 1kN ki
[2kN!m 1kN ki 1kN 2kN 1kN
A
f—2m —yf
(a) Continumm (b) Discretization

Fig. L.16. Fig. 1.17. Alternative way of discretization

1.4.5. Discrefization Process

The fo]lowfng points to be considered while analysing the discretization process.
(i) Type of elements:

v’ The type of elements to be used will be evident from the physical problem.

v’ A structure, shown in Fig.1.18 is discretized by using line or bar elements.

Fq

I

TS
R

S
/

7777

(a) Original structure (b) Discretization using bar elements

Fig. L.I8.



116 Finite Element Analysis

v The finite element idealization can be done by using three dimensional rectangular
element in stress analysis of short beam problem which is shown in Fig.1.19.

F2
F2
N
A B
c D
2 H
(b) Discretization using L
(#) Short beam three-dimensional elements F
Fig. 1.19. (a) Short beam  (b) Discretizati using three-di ional el

v A thin wall sheet shown in Fi ig.1.20 (a), which can be discretized by several types of

elements as shown in Fig.1.20(b).

- Using conical ring  Using axisymmetric ring
elements elements

% ,

Using flat triangular ~ Using curved triangular
Plate elements plate elements

~————-

Fig.1.20. (a) Original shell

(3

Fig.1.20. (b) Discretization using
different types of elements
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v’ The choice of the element to be used for discretization depends. upon the following
factors.
() Number of degrees of freedom needed.
(if) Expected accuracy.
(iif) Necessary equations required. )

v' However, in certain problems, the given structure cannot be discretized by using only
one type of elements. In such cases, we can use two or more types of elements for
discretization.

Example: Air craft wing.
(i) Size of elements: . ¢

v The size of elements influences the convergence of the solution of the problem
directly. So, it should be chosen with more care.

v If the size of the element is small, the-final solution is more accurate. But the
computational time for the smaller size element is more when compared to larger size
element. ‘

¥ Another characteristic related to the size of elements that affects the finite element
problem solution is the “dspect ratio” of the elements.

v Aspect ratio is defined as the ratio of the largest dimension of the element to the
smallest dimension. The conclusion of many researchers is that the aspect ratio should
be close to unity as possible. For a two di ional rect; far el the aspect
ratio is conveniently defined as length to breadth ratio. Aspect ratio closer to unity
yields better results. . —

(iii) Location of nodes: ’

v If the structure has no abrupt changes in geometric, load, boundary conditions and
material properties, the structure can be divided into equal subdivisions. So, the
spacing of the nodes are uniform,

¥ If there are any discontinuities in geometric, load, boundary conditions and material
properties of the structure, nodes should be introduced at these discontinuities as «
shown in the following figures.

Fig. 1.21. Geometric discontinuities

LN
\ Node

Fig. 1.22. Discontinuity in loading
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Node

] - > Node
-« U >
<] > Material 1 (Steel)
“ > Material 2 (Aluminium)
-« —

>

Cracked plate under loading
Fig. 1.23. Discontinuity of boundary conditions Fig. 1.24. Material discontinuity

(iv) Number of elements:

The number of elements to be selected for discretization depends upon the following
factors:

1. Accuracy desired.
2. Size of the elements.

3. Number of degrees of freedom involved.

v If the number of element in the structure is increased, the final solution of the problem
is expected to be more accurate. But the use of large. number of elements involves a
large number of degrees of freedom, it leads the storage problem in the available
computer memory.

A differential equation along with subsidiary conditions on the unknown function and its
derivatives, all given at the same value of the independent variable, constitutes an initial
value problem. The subsidiary conditions are initial conditions. If the subsidiary conditions
are given at more than one value of the independent variable, the problem is a boundary value
problem and the conditions are boundary conditions.

For Example:

v/ The problem y" + 2 y' = %; y(r) = I, y'(m) = 2 is an; initial-value problem, because
both the subsidiary conditions are given at x =. :

v The problem y” + 2 y' = e*, y(0) = 1, y(1) = 1 is an boundary-value problem, because
the two subsidiary conditions are given at the different values x =0 and x = 1.

Introduction

TAL VALUE PROBLEM

Example 1.1 | Find the solution of the initial value problem.
V'ty=0; y3)=2

Given: Differential equation, y'+y = 0
Boundary condition at y(3) = 2
© Solution: Differential equation, y' +y = 0 (03}
Boundary condition at y(3) = 2 }
= x=3,y=2 @
) d
Using Auxiliary equation, A+1 =0 [y = |
A= -1 .3
We know that, complementary function or characteristic function,
y(x) = cle*¥ .. (@
Applying the boundary condition (2) in equation (4),
¥3) = e’
2=¢e? [ y3)=2
¢ =26 .5

By substituting equation (5) in equation (4)
y) =2 elex
As the solution of the initial-value problem.
Result: y(x)=2 e e~%, as the solution of the initial-value problem.

a2 d
Example 1.2 | Find a solution of the initial-value problem a‘% + i -2y=0,

Boundary conditions y(0) =2, y'(0) = 5.

dy d
Given: Differential equation, EcXZ +E¥ -2y 0

[

Bou‘ridary conditionsare y(0)=2, y(0) = 5

)
© Solution: Differential equation, %;% +3§ -2y =0 (D)
Boundary conditions are  y(0) =2, y'(0) = 5 (2
Using auxiliary equation, A2 +1-2 = 0
A-DA+2) =0
= M=l Ay = =2 .03

¥ . s Ayx
We know that, complementary function, y(x) = Ae ¥ +Be™2
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Put A;=1, Ay=-2 in the above equation,
y(x) = Ae+Be ™ (@)
y(x) = Ae*~2Be % . (9
Applying the boundary conditions (2) in equation (4) and (5), we get
y0)=2=x =0, y=2
p(0) = Ae’+Be?
2= A+B -
()
Similarly, y'(0)=5,x=0,y =5
y'0) = Ae’-2Be¢°
5= A-2B
e (7)

Solving the equation (6) and (7),

A+B =2
A-2B =5
6.4 -

3B = -3

Substitute the B = -1 value in equation (6),

A-1 =2
A= 2+1

By substituting A and B values in equation (4),

Result: General solution y(x) = 3e¢*—¢ 2

EMS SOLVED ON:BOUNDARY-VALUE

Find a solution of a boundary-value problem y'+y=0withy0) =0
and y(m/6) = 4.

Given: Differential equation, y" +y

Boundary conditions are y(0)=0, y(n/6)

© Solution: Differential equation, y"+y =

Boundary conditions are y(0)=0, y(n/6)

1

n
~ o o

.
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- 2
Using auxiliary equation, A% +1 = 0 [ y'=% =A; y"=;—xz=lz]

Al =
A= A1
A= xi

A = afiP

We know that, complementary functions are,

[Here,a=0,B =1]

y(x) = e [c; cos Bx +c, sin Px]
y(x) =0 [cy cos x + ¢, sinx]
[¥(x) = ¢ cosx +c,sinx | 2
Applying boundary conditions in equation (2), '
¥(0)=0 = y(0) = ¢, cos (0)+c, sin (0)
0=c+0 ['.‘cos0=1;sin0=0]
¢ =0

Similarly, y(n/6)=4= p(n/6) = c, cos (r/6)+ c, sin (n/6)
1
e E)nld
3.,
5=

Substitute the ¢; and ¢, values in equation (2)

~

Put ¢,=0, ¢,

y(x) = 0+8sinx

Result: General equation, y(x) = 8sinx

Example 1.4 | Find the solution of the boundary-value problem y" + 4 y = 0 with

Ww8) =0, y(w6) =1

Given: Differential equation, y”+4y = 0 (D)
Boundary conditions are, y(n/8) = 0 and y(n/6)=1 ()
© Solution: Differential equation, y"+4y = 0
Boundary conditions are, y(n/8) = 0 and y(n/6) =1
Using auxiliary equation, A2+ =0

A2 = -4
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Ao=o[-7
A= £20
A= azxif
We know that, complementary functions,
y) = ¢ [c; cos Bx +c, sin Bx]
yx) = € [c; cos2x +¢ysin2 x]
]LCV) = ¢jcos2x+c, sinm
Applying first boundary condition in equation (3), -
y(/8) = 0
= y(n/8) = ¢| cos 2 (n/8) + ¢, cos 2 (n/8)
y(n/8) = c, cos (n/4) +c, sin (n/4)

o+ o (befT) e (b7
(T (E)

2 2

]

0

(o) ¢, (ﬁ)wz (#) =0
Applying second boundary condition in equation (3),
y(nl6) = 1
= y(@/6) = c;.cos2 (n/6)+c, sin 2 (n/6)

3 1
a3 +e, 2
Solving the equation (4) and (5),
Equation (4)=> ¢, (\/-l_—i) +ey (\/L—z-)
Equtin(5)= (ﬂ) rey (%) =1

2

1 T e sins
1 3
10053 cosmy

=1

~—
[l

Substitute the ¢, vatue in equation (5)

2.732(325)+c2(%) =1

[ Here,a=0,B=2]

.3

.4

NG
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From these ¢, and c, value, substitute the equation (3)
y(x) = 2.732cos2x +(~2.732) sin 2 x
y(x) = 2.732[cos2x—sin2x]
Result: General equation, y(x) = 2.732[cos2x —sin2x ]

18 EIGEN VALUE PROBLEM [BOUNDARY VALUE PROBLEM)] -
When applied to the boundary-value pfoblem, has the form
Y +Px,A) Y +Qx,A)y = 0 )
Non-trivial solutions may exit for certain values of A but not for other values of A. Those
values of A for which non-trivial solutions do exists are called eigen values, the
corresponding non-trivial solutions are called eigen functions.

For example: For the axial vibration of a bar, to find z(x) and A that satisfies the partial
differentiation equation and boundary conditions are,

Ay"+ry' = 0, for0<x<L
y©0) = 0, yL)=0

OBLEMS SOLVED:ON-EIGEN VALUE PROBLEM [BOUNDARY VALUE
M) NGty ; :

Example 1.5 | Find the eigen values and eigen function of y'' — 4 xy' + 4 Azy =0;
with boundary conditions are, y(0) =0, y(1) +y'(1) = 0.
Given: Differential equation, ;
y"—4xy’+4?»2y =0
Boundary conditions are, y(0) = 0

y(H+y'1y = 0
© Solution: Given differential equation,
Yy -4xy'+4rly = 0 (D
Boundary conditions are, y(0) = 0
y()+y'1) = 0 - (2)
The auxiliary equation is,
m-4im+42r = 0 0
= (m=-2M)(m-2%) = 0
= (m=-2%) = 0 and (m—21)=0
= mp=2k, m = 2%
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We know that, complementary function is, y2)+2y'(2) = 0 . (2)
y(x) = ¢ e™T +¢yx e™* The auxiliary equation, m*~4 A m+42% = 0 .3
yo) = ¢ IS +c2xe“’ ) N (m-2%0)(m-21) = 0

m = 2N, my=21%

Differentiate with respect to “x” in equation ), g .
We know that, complementary functions are,
Ax

y'(x) = 27»c1e2“+c2[x27»22“+32“] 2ax 2
P = 2Ax 2hx 2hx ‘ Y = ae +02xe -
y(x) = 2h¢pe +c2[x27»er +e ] ... (5) : :

Differentiate with respect to ‘x” in equation (4),
Applying first boundary condition in equation (5),

YO = 0, x=0, y=0 y'(x) = 210,ve2“ +c2[x2k(e“x +e2MF 1. . (5
= y(0) = c; 0y c;(l]) 0 . Applying first boundary condition in equation (5), we get,
[e=10] ym=o0 y
: > Y1) = 2h¢ e +,20 et 462y = 0
Applying second boundary conditions in equation ), o ) - T
y(+y'(1) = 0 . ) = 2hcie’” tg2he +e ] =0

We get, y1) = ¢ 2 +02e“ = 2hete2A+1] = 0 ... (6)

yy = 2h¢ 2 4o (2ke27‘ +ez>.) i Applying second boundary condition in equation (5) and (4),

| 2 L
We know that, ' yA*2y@) =0
s 4 4n
= 2) = ce " +2¢e
= c,e“ +czen+2kcle“ +cz(2ke2)‘ +e2)‘)= 0 Y ! 2 B
: @) = 2hc et oA et +eh)

= G (1+20) +6(2+22) = 0 [ = ¥ 1 2
If now follows that ¢, = 0 and either ¢, = 0 (or) A =~ 1. : Adding both equations, N .
The choice of ¢, = 0. => c et +2cze“‘ +2[kc,e“‘ tey(4he " +e t) =0
The result in the trivial solution y =0. > et +2ce"t +4ng et +2c,(4ne*t 4ty = 0
The choice of A =~ 1. - cle“" +2c2e“ +4Ac,e“‘ +8xc2e“‘ +202e4x =0
The result in the non-trivial solution, ie., y=cyx €, where ¢, = arbitrary = a+2c+4hc+8heyt2c, =0
Thus the boundary value problem has eigen value A =-1 and the eigen function = =0 (D

2x

(1+41)c +(8A +8)c,
|

Solving equaﬁdns (6) and (7),

Result: Eigen value and eigen functions, y=cx e =, 2hete2A+1)y =0
= (1+40)c;+(Br+4)c, = 0
Example 1.6 | Find the eigen value and eigen function of y' -4 Ay +4 1 =0; : oy ; :
" Set determination is equal to zero, )
with boundary conditions are, y'(1) =0, p(2) + 2 y'(2)=0. 2n 1421 [
Given:  Differential equation, y" -4 y'+4%y = ¢ 1+4% 4+8% ‘ =0 7

Boundary conditions are, y'(1) = 0, y(2)+2 y'2)=0

© Solution: Differential equation,
y'-4hy'+4ry
Boundary conditions are,  y'(1)

= 2A(A+BA)=(1+20)(1+42) = 0
= SA(I+2A)~(1+2A)(1+42) = 0
- = (1+2X)[BA-(1+40)] = 0

o
(=~}
-
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= (1+20)@r=-1) =

1
When, A, =-5and A, = 4 the result has non-trivial solution,

. 1
1t follows that eigen values are A = — 5 and A, = 7 and the corresponding eigen functions

are,
¥ = cpxe* and
¥ = 63+x)e”
Result: Eigen values, A, = -—%, Ay =%

Eigen functions, y; = ¢,x e~*

There are three methods to solve eigen value problems. They are,
1. Determinant methods
2. Transformation methods
3. Vector iteration methods

1.10.1. Determinant Methods
These methods are primarily based on the equation;
{[K]-A[m]}{u} =
If the eigen vector is non-trivial, the required condition is,
det{[K]-A[m]| = 0
= |[K]-A[m]] = - (16)
Tnal value of } is taken and the determmant [[K]-A[m]|=0is computed. The curve
is drawn by taking several trial values.

I[kl-u[mtl \
\_x/\
of M\_/ ka\/

Co——

Fig. 1.25. Determinant-based Method

Due to heavy computational cost and several iterations are required to determine all the
eigen values, the determinant based methods are not implemented in practice.

1.10.2. Transformation Methods
This method is used to transform the eigen value problems,

Let, [K}{u} = A {u} (1)
Transform [ K ] into a diagonal matrix by using a series of matrix transformations,
[K] = [T]T[K][T] .. (1.8)

where, [ T ] is the transformation matrix, which is usually an orthogonal matrix.
ie, [T]T = [TF

When we transform [K.] completely into diagonal matrix, then the elements on the

diagonals are considered as eigen values,
A 0 .
[TIT [K][T] = Ay . (1.9)

¢ 0 A3
where, A}, A, and A; are eigen values.

1.10.3. Vector lteration Methods

v’ Vector iteration methods are normally available in many commercial finite element
software packages.

¥ In this method, trial eigen vector is assumed and repeated matrix manipulation is
performed to compute the desired eigen vector.

D-PROBLEMS ON EIGEN VALUES [MATRIX APPROACH]

4 -20 -10
Find the eigen valuesof | -2 10 4.
6 -30 -13
©Solution: .
Step I: To find characteristic equation,
- 4 20 -10
Let the given matrix be A=]-2 10 4
6 -30 -13
The characteristic equation is
M-aA2+ayd-ay = 0 ' (1)

where, a, = Sum of leading diagonal elements

4+10-

i
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e
@, = Sum of minors of the leading diagonal elements
B , 10 4. 4 -10 4 —20,
Cl-30 -1 6 -13 -2 10

= —130+120-52+60 +40-40

-0

4 =20 —10
a;=|Al = -2 10 4l
6 -30 -13 v
= 4[~130+ 120] +20 [26 - 24] - 10 [60 ~ 60]
= —40+40+0

ay =0 ()]
Substitute the a,, a, and a, values in equation (1), ‘

Step 2: To find eigen values:

A3-A2-21 =0
A(A2-A-2) = 0
When A = 0, AZ-A-2 =0
1:y1+8 123
A = 2. T3
=2o0r-1

.. Eigen values are

Result: Eigen values, Ay =0,1,=-1, A3=2.

1.12. WEIGHTED RESUDUAL METHODS

1.12.1. Introduction
The method of weighted residuals is a powerful approximate procedure applicable to
several problems. For structural problems, potential energy functional can be easily formed,
s0, Rayleigh-Ritz method is used. On the other hand for non-structural problems, the
differential e(quation of the phenomenon can be easily formulated. For such type of problens,
the method of weighted residuals becomes very useful. There are many types of weighted
residuals, of them four are very popular. They are:
(i) Point collocation method.

(ii) Subdomain collocation method.

(i) Least squares method. )

(iv) Galerkin’s method. /

Among these four methods, the Galerkin approach has the widest choice and is used in
finite element analysis. ' ‘

1.12.2. General Procedure

Our interest is to find y, which is the solution for the differential equation. If it is not
possible to find a solution, we assume an approximate function for y. When we substitute the
approximate solution in the differential equation, we can get residual and that residual can be
expressed as, ’

R(x;5 ay, ap, a;3) = 0
where a,, a, are unknown parameters present in assumed trial function,
The assumed trial function can be expressed as follows: l
y = fix; ay,aya;, ... ,a,)
Trial function y must exactly satisfy the boundary conditions.

The method of weighted residuals needs the parameters q,, az', as, ... > ay, to be
determined by satisfying the following equation.

fw,R(x;al,az, as, ... ,a)dx = 0
D

....(1.10)

where, w; is a function of x and known as weighting function.
D is a domain; R is a residual,

1.12.3. Point Collocation Method

In the collocation method, also called point collocation, residuals are. set to zero at n
different locations X /» and the weighting function w; is denoted as (x —x,).

S(x-x,;)

I

=> W
Substituting w; value in equation (1.10),

= f&(x—x,)R(x; aj,ay ay, ..;...,a,,)dx =0
D
The x/’s are referred to as collocation points and are selected by the discretion of the
analyst,

. (1.11)

wIn equation (1.11), term f&(x—xi) =]
. D
So, R(x; a),ay, a;, ...... ,a,) = 0
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1.12.4. Subdomain Collocation Method

In this method, the weighting functions (w;) are chosen to be unity over a portion of the
domain and zero elsewhere. It is given as follows:

{ 1 forxinD,

Y17 10 forx not inD,
1 forxinD,

Y2 = 10 forxnotin D, )
1 forxinD,

Y1 =10 forx notin D,

where D is a domain.
1.12.5. Least Squares Method

In this method, the integral of the weighted square of the residual over the domain is
required to be minimum.

ie, 1= f[R(x;a,,az, gy v a,)dx = minimum
D

where, I = f(a],qz, ...... a,)

a1 )
The requirement is 2a " 0, i=1,2,3,...... n
a;

1.12.6. Galerkin’s Method

In this method, the trial function, N(x), itself is considered as the weighting functions;
that is,

w; = N(x)
Substitute w; value in equation (1.10),

= fN,(x)R(x;a],az, ...... a)dx = 0 - (112)
D

Introduction

Example 1.8 | The following differential equation is ilable for a ph
2,

phenomenon AE %c‘% + gy = 0 with the boundary conditions

0

»(

dy

dx =0

x=L

Find the value of f(x) using the weighted residual method.

. . . dz
Given:  Differential equation, AE# +qy =0

Boundary conditions are  y(0) = 0
dy -
dx .o 0

To find: f(x)
©Solution: Assume a trial solution.
Let y(x) = agtay;xtayx?
Apply first boundary condition, i.e., substitute x =0 and y = 0 in equation (1).
M= 0=20ay+0+0
=
Apply second boundary condition,
y(x) = apgtayxta,x?
d
3‘5 = a,+2a,x
d
At x=L, F =0
= 0= a,+2a,L
= |a, = -2a,L

Substitute a and a, value in equation (1),

M= yx) = -2a,xL + ayx?
y(x) = a;[x2-2xL]
d)
> 2 - aqex-2n

. ay.

“|.dx?

= 2a,

(D)

.2
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2
We know that, Residual, R = AE:TXX2 tg,=0
= AEQa)+gqy = 0
=> AE2a; = -¢,
—4
= %27 7aAE

Substitute @, value in equation (2),

= yx) = 53 [¥2~=2xL]

Result: Final solution, y(x) = = [2xL-x2}
2AE

Example 1.9 | The governing differential equation Jor the fully developed laminar
2
Slow is given by y% +pgcos §=0.

22 d

If boundary conditions are [T: l =0, u(L) = 0, find the velocity distribution, u(x).

x=0
©Solution: Differential equation
d

n d_x]; +tpgcos® = 0

” du
Boundary conditions ax

x=0
ul)y = 0
To find: Velocity distribution, u(x).
© Solution: Assume a trial function.
Let u(x) = ag+ax+ayx?..... (D
Apply first boundary condition, »

odu - a
ie, o = 0 atx=0.
= a4 Coatlayx
du
Atx=0,$ =0
> 0=gq '

smroauction . . 133]
Apply secondary boundary condition - : :
ie, at x =L u(x) =0 o

= ux) = ag+ajx+a,x?

= 0 ='gy+adL+a,L2
Substitute a; =:0..

= 0= ay+al?

i lag =

Substitute ay and @, valye in equation (1),

ux) =,7d2'L2v+0‘+;12x2
L= @lx-12] -
u(x) = a3 [x2-12] )
odu ) . o ‘
2n F al25] . )
| d%u g
w2
P . T 2y 3
We know that, Residual,R = P ax? +pgcosh =0

= pRay)+pgeosd = 0
n2a, = —pﬁgcose

-pgcosb
a, = 2

Substitute a, value in equation (2),

= ux) = “—"—g——2:°se‘[’x§;L2]

u(x) = R-gé—ciﬁg [_LZL;xZ]

N coSe HER B
Result: Velocity distribution u(x) = ZES52 112_52]

21
Example 1.10 | Find the solution for.the following differential equation.
diu A
EId?—q0= 0.‘ S
“du
The boundary conditions are  u(0) = 0{,:‘ -t 0)=0

d? P - du
wW=0 . Em=0
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Given: The governing differential equation

d*u
El 24— =0
- du
The boundary conditions are u(0) = 0 Ix =0
du du
2@ =0 23W=0
©Solution: Assume a trial function.
Let u(x) = gp+ta;x+a,x2+azx3+a,xt... (1)
Apply first boundary condition,
ie, atx =0, u(x)=0
= 0 = a+0+0+0+0

Apply second boundary condition, i.e., at x =0

> [a=0]

du _
> dx
d
= d_: = 0+a +2a,x+3a;x2 +4a,x3

Apply third boundary condition i.e., atx =L

=

=]

=

=

0 = a+0+0+0

=

du
*odx2
d2;
d—xl; = 2ay+6azx+12a,x2

0 = 2a,+6a;L+124,12
2a, = -6a;L-124q,12
[92 = -Ba;L+64,17]

3
Apply forth boundary condition, i.e., atx =L, % =0.

=

=

=

o

d3
95 = 0+6a;+24a,x

0= 6a,+24a,L
6a; = -244,L
ay = —4a4L;

Introduction
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Substitute ag, a;, a, and a; values in equation (1), '

"
u(r) = 0+0-[3a,L+6a,L2]x2 ~da,Lxd+a,xt \
= —[3a;L+6a,12]x2~4a,Lxd+a,x* '
= —[3(-4a,L)xL+6a,12]x2~4a,Lx3+a x4
[+ ay=—4a,L]
= 12a412x2-6a412x2-4a,Lx3 +a,x*
= a,[1212x2~612x2-4Lx3+x4]
= a4 [6L2x2 ~4Lx3+x4]
[u(x) = a,[612x2-4Lx3+x]] (@)
du 2 3
> T = a[612Qx)-12Lx2+4x3]
d%u
= a2 = as[6L2(2)~24Lx +12x2]
d3u
= i a,[0-24L+24x]
du
= = a,[0-0+24]
du
i 24a,
. d*u
We know that, Residual,R = EIW - ¢ =0
= EIQ4a)-g, = 0
= El24q, = g,
- J
= %7 %EI

Substitute a, value in equation (2),

= ux) = %[ﬂh—z—uxnﬁ]
9o 3 2,2
= u(x) = 24Elv[x4»4Lx +6L2x2]

Result: Final solution

u(x) =

'24‘_‘]%‘—1 [x*~4Lx3+6L2x2)
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Example 1.11 | The following differential equation is ilable for a physical

Pphenomenon
d’u
AE a2 Tax = 0
d
The boundary conditions are  u(0) = 0, AE -d—’i =
x x=L

By using Galerkin’s technique, find the solution of the above differential equation.

4
Given: Differential equation, A EdT:; +tax =0
- du
Boundary conditions, #(0) = 0, A EE =0 >
. x=L
To find: u(x) by using Galerkin’s technique.
©Solution: Assume a trial function.
Let u(x) = ag+a)x+ayx?+ayx3 (D)

Apply first boundary condition, i.e., atx =0, u(x)=0. o
M= 0= ag,+0+0+0

=
o d
Apply second boundary condition, i.e., atx =L, AE Elf =0.

du
dx
= 0= g +2a,L+3a;L2
= [a = -Qa,L+3a,13]

Substitute a and a, value in equation (1),

il

= 0+a;+2ayx +3a;x2

ux) = 0+-Q2a,L+3a;13)x +a,x2 +a,x3
= -2aLx-3a;l2x+a,x2 +ayx3

= ay[x2-2Lx]+a; [x3-31%x]

ux) = a2-2%x+a; 030221 @)
> :
Weknowthat, Residual, R = AE:% tax . L0

@ _% = @Rx-21)+a; 322317

Tidzgt U o T
22 = @2[2]+a;[6x]

foen s

Introduction . - . ' : _. o ) .
E = 2a'2’+603x9 ) o S e
P e ki

Substitu_tem value in equation (3),

\ 3)=> R = AE(202+6a3x)+a)lc_
Residual, R = A Ek Qayt6azx)tax
Fromit Galerkin’s techhique, s R
L
[wRrdr =0
.
where, w, = weighting function
From equation (2), we know that,
w) = (x2~2Lx)
wy = (x3-312%x)
Substitute w,, w, and R values in equation (5),
. .
¢)= f(x2—2Lx)[AE(2a2+6a3x)+ax]dx
0
L '
f &3 -3L2x)[AEQa,+6ayx)+ax]dr = 0
0

n
=1

L .
6)= f(x2—2Lx)>[AE(2a2:l-6a3x)+ax]dx‘
0 ' X

]
=4

L
f(xzf—’zLa‘c)[2a§AE+6a‘3‘AEx+ax]dx =90

0 .
JRaAEX +6a;AEx +ax 40, AELy~12a; ABL22 ~2aL 2] dy
I, %3 xb o xt s 2 030 g3l
:[2a2AE?+6a3AET+aT—4a2AEL3‘—.'12a3AEL*3"—2aL—3'}

R LA et e L4
= 2a2AELT +643AET+aLT—4a2A‘E\‘2‘ 3

L
-12a;AB5 -2a% =

)

(9

-(6)

.
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2 3 L4
= §a2AEL3+EaJAEL4+q—4——ZaZAEL3—4a3AEL‘—%aL“= 0
2 3 alt 2

= AEa2L3[§—2]+a3AEL4[-2‘~4}+‘4—‘—§ alt =0

-4 5 2 1
=> 3 AELa)-35 AElfa; = [g—z}ab‘

-4 5 5
= 3 AEL*a,—5 AEL%a; = 1z el
= .4_ 3 _5_ 4 — j 4

7 AEqLP+5 AEBa; 1% = 17 al . (8)
Equation (7),

. L

> f(x3—3sz)[AE(2a2+6a3x)+ax]dx =0

0

P -3L2x][2a,AE+6a;AEx+ax]dx = 0

U
P

L
= [RAEG ¥ +6ABax +axt -6 ABG, L2x -
0
18AEa;2x2-3al2x2)dx=0

4 5 5 2 3 3L
:I:ZAEaZXT +6AEa3x? +% ~6ABa, L2 - 18AEa3L2x‘§' -3 aLz"? } =0
0

1 6 1 L
:>|:5 ABayx*+35 ABayx5+5 ax’-3AEa;12x2 -6 AE a3 L2 x3—a 123 ]0

1 6 1
=3 AEa2L4+g AEay L5+-§ al’-3AEq, LAL)-6 AE a; L2(L3) —a L(L3) =0

1 6 I
=3 AEq,L'+7 AEa, L+3 al’-3AEa,L*-6AEa;Li-als=0

1
> AEa2L4[5—3:| +AEa3L5|:g—6J +aLS[%-1J 0

=5 24
> AEazL{T]'?AE%_Ls

0

4
gaU

5 24 -4
> 7 AEay L4+ ABa; LS = < abl .9

Solving equations (8) and (9),
on (8 4 e 545 ABa = 25 s

Equation (8) => 3 AEa,L+5 AEa; LY = 17 all
; 4 —~

Equation (3) = % AE a, L4+2? AEa;L% = —5"1 als

. . 5 .
Multiplying equation (8) by. 3 L and equation (9)-by %,

20 25 -25
6 AEa L+ AEa LS = —= als
20 9% . 16
s AE@ L4477 AEa; LS = - als

25 %6 16 25
(4 —IS)AEaJL5 = (IS ~24)aL5

375-384 384-375
= "} 5 = | ———— 5
( 60 )AE"3L ( 360 )“L

Subtracting,

=9
= 50 AEq P = 3ggald
= -0.15AEa; = 0.0254a

= a3 =

=a . (10)

Substituting-a, valie in-equation (8),

& e 1505 (e e - =
3 ABa13+3 A’E(sAE)” 2 alt

4 -5 5 —a
3 AEa, L 2. aLf~-5 AEL (6AE>
4 -5 5 “
= AE = — = 4 4y
3AEa2L3 2 aL“+12zzL \

4o
3 AEq, I3 =

I
=}

= | a
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We know that, R = -24a,+50

oR
day 2
. oR . .
Substitute R and 2a. values in equation (5),
1
al 10
= Ba " f(—2a|+50)(—2)dx

0

The requirement is, Py 0
1 .

10
= f(—za,+50)(-2)dx =0
0
10
> f(—2a1+50)dx =0
T
= f[—za,dx+50dx] =0
0
10
= [—2a|x+50xj| =0
0
> —2a,(10)+50(10)~[0] = 0
= ~20a,+500 = 0
= -204, = -500

-

Therefore, the trial function becomes, y = 25x (10-x).

itselr is

s

(6

(iv) Galerkin’s method: In this. method, the trial. functi
weighting function, w,.
10
| > f w;Rdx =
0

I
(=]

Here, the trial funetionis,. y =- w; = a4, x (10~x).

d as the

(D

Introduction 147

Substitute w;and R values in equation (7),

10
= falx(10~x)><(—2al+50)dx =0
o
10
> alfx(l()—x)x(—201+50)dx =0
0
10
= alf(IOx—x2)(_—2a,+50)dx =0

0
10
= a [[F20a,x+500x+2a,x2-50x2]dx = 0
0
2 10

2 3 3
= a,]:—20a1x7+5002+2a1%—50%} =0
0

20a 5 2a 50
= T'[102-O]+%[102-0]+T'[103~0]-7[103-01 =0

2a, 50
= ~104,[100]+250 [100] + =5~ [1000] -7 [1000] = 0
= —1000 a; + 25,000 + 666.66 a, — 16,666.66 = 0
= -333334, = -§333.33

- -
) The trial functionis, y = 25x (10-x)
From equations (3), (4), (6) and (8), we know that the value of parameter a is same for all
the four methods.
Result: Parameter, a, (for all the four methods) = 25

- Example 1.14 | The differential eéuation of a physical phenomenon is given by,

12,
ﬁ% +500x% = 0, 0sxsI

Trial function, y = a; (x-x?)
Boundary conditions are, y(0) = 0

»a) =0
Calculate the value of the parameter.a by the following methods:

(i) Paint collocation; .(ii) Subdemain collocation; (iii) Least squares; (iv) Galerkin.
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Given: Differential equation, a2 T500 x2=0,0<x<1 (1)
Trial function, y = a (x —x%)
Boundary conditions are, y(0) = -0
y1) =10

To find: The valug of parameter a by,
(i) Point collocation method.
(i) Subdomain collocation method.
(i) Least squares method.
(v) Galerkin’s method.
© Solution: First we have to verify, whether the trial function satisfies the boundary
conditions or not.
Trial function is, .y = a,(x —x%)
When x = 0, y=0
x =1 y=0
Hence it satisfies the boundary conditions.
(i) Point collocation method: y = a,(x-x%

& _ a,(1-4x3)

dx _
2

g—x% = a,(0-12x?)
a2

Ztlz = -12a,x2

42
Substituting a{' value in given differentigl equation (1),

Residual, R =~ 12a, 2+ 5005 ... )

In point collocation method, residuals are set to zero. 4 S K
’ =R = ~124,2+500x2=0 )
In this problem, we have to find only one parameter, a. So, cnly one collocatmn pomt is

needed. The poirit may be chosen between 0 and 1. Let us take 7

Substitutin g x= % in equation (3),

1V - LY
= R=-12a,(§) +500(§) =0

=

.=

=

Hence the trial function is,

-124, (J—;)+ 500 (%) =0

~3a;+125 = 0

1, > T)

(i) Subd

1

‘This method requires, !R dx =

0

Substitute R value,

=

U

4

1
S 12022+ 50052) dx
0
1

37! 3
-12a,[’ﬂ +500[’;—]0

12
—5o-0+% - =

—-12a1+m
3 3

~12a,+500 =

—12al

“1

Trial fanction i is, yr=

(iii) Least squares method:

This method requ!res i=

It can also be wnttén 'as‘ “— = f R~

o

= 41.66 (x —x4)

o

<

0

- —~500 -

500
]2

- 41 66(x~x“)

0

fdex ‘

6Rl-:
60,

1.49

. (4)

()

.. (6)
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Weknow that, R = —12a;x2+500x2

OR _ 2
9a, = -12x

Substitute R and g—f‘ values in equation (6),
1

1
al
> % " {(—12 ay x2+ 500 x2) (-12 x2) dx

O O
The requirement is, 2a; - 0
1
> [12ax2+500x) (- 12x2)dx = 0
0

= J (1440, x4-6000x% dx = 0
0
1 1
x3 x5
= 144 q {—} -eooo[—] =0
ILs 0 5 0
1444, 6000
> T[I—O] -5 [1-01 =10
= 288a, = 1200

=1 a, = 41.66 (D
The trial function is, y = 41.66 (x —x%)
(iv) Galerkin’s method: In this method, the trial function itself is considered as the
weighting function, w.
1
= [w;Rdx = 0 —®
0
Here, the trial functionis y = w, = a, (x —x%)
Substitute w; and R values in equation (8).
1

> Jay =5 (-12a, x2+500x2) dx = 0
. .
) 1
> a [(e-x% (120,22 +500x%) dx = 0
0 5
1
=> ay f (120,83 +500%3 + 12.a, 36 - 500 6) dx = 0
4 v
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1 1 1 !
x4 x4 x! X!
o om0 () s (%) v (2] -0(2) ] - o
][ N4, 4 N7 0 7y
-124 500 124, 500
= T[1—0]+T(1—0)+T(1~0)——7‘(l—0) =0
= =3a;+125+1.714a,-71.428 = 0
= -1.286a; = -53.572
= a, = 41.66 .. (9

Trial functionis y = 41.66 (x —x*%)
From equations (4), (5), (7) and (9), we know that the value of parameter a, is same for all
the four methods. N
Result: Parameter, a) (For all the four methods) = 41.66

Example 1.15 | The differential equation of a physical ph is given by

2
%% +500x2=0; 0<x<I

By using the trial function, y = a; (x - x%) + a, (x — x3), calculate the value of the
parameters a, and a, by the following methods:

(i) Point collocation; (i) Subdomain collocation; (iii) Least squares; (iv) Galerkin.
The boundary conditions are:  y(0) = 0
yn =10
Given: Differential equation, % +500x2 = 0, 0<x <1 (D)
Trial function, y = a, (x ~x3)+a, (x -x5)
Boundary conditions are: y(0) = 0
¥1) =0
To find: The value of the parameters a, and a, by,
(#) Point collocation method.
(i) Subdomain collocation method.

(iif) Least squares method.
(iv) Galerkin’s method.

© Solution: First we have to verify, whether the trial function satisfies the boundary
conditions or not.
The trial functionis y = a, (x -x3)+a, (x - x%)
When x = 0, p=0
x =1 y=0

Hence it satisfies the boundary conditions.
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= —72000

2
= a2[0.6667—so 12 4200 2—2 + 200 12 - 1000/ }

3
Substitute L =50 x 10-3 m (given)
= a,[0.6667-02+0.5-2+0.5-13333] = 72000
= a,[-1.8666] = —72000
a, = 38572.80

Galerkin solution, T(x) = 300 + 38572.80 (x2 -2 L x)
Result: Galerkin solution, T(x) = 300+ 38572.80 (x2 —2 L x)
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b a'w ‘W 4 2w _d'W
Substitute, At dy4 and 73 ay? in govemmg equation,

EM 4 i
= ——[a[sinltf(%)-sin(%’l)+2a,sinn7xsin£bl-#+ ;

12(1-v?)
a, sin(%) sin(%’z)-g ]“90 =0 )
3
Take residual, R = #’_‘_‘,z)[a, smn sm—bz (_n_: 22 3 +% ) }—qo
b a
Using Galerkin’s method, f f W(x,y)Rdxdy = 0

(]

s

3
sinna—x sinﬁbl [ #hvz) a smn sm%

ot
st—

n
(F Yt )-00 ]dXdy =0

_ER xY (2F P 1T getE an2
= ]2(l—v2)al ) t\% ff sin? == sin? dx dy
00

b a | l+eos™

ER 22 (2} 2 [ P ] oy

= 12(1-v2)"1[(a) +(b) ] ff P sin? %" drdy
0 0

b a
ER [ASNEAEE 2% a LTy
= 2x2(1-v) 9 [(a) +(b) ] f(”sm ‘a '22—1:)0 st dy
0
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ER Y (z} T2 o ny
2 T2x2(l-v) @ [(a) +(3) } f”’“2 5 D
0

4

__EB (zY (=Y c2my b
x4d-» 4 [(a) +(b) H”S‘" b '27'::|0
2

__ER___ (E)z +(£)2 P, 2% 2b
2x4(l-v) 9 | \a b T r o on
)

b
- qof[—(— 1)-%—(-1)”} sin " dy
0

[ sin2n=0; cosm=-1]
b

ER AL oy
12x2(1-v) 4 [(a) +(b) ] f““‘2 b W

0

b .
2a .
= q (T)fsm—bz dy
0

b
Eh3 E)z (1)2 2 Ty
12x2(1-2) 1 [(a b ”fs‘“z p
0

y b iny
it [ () ] {[”cos : de
g

1690 12(1-v9)
G =" TEB [E)Z (E)Z (8
R a * b

If square plate, a = & ... (6)
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Substitute the equation (6) in equation (5),

1690 12(1-v?3) 1 2
Q= Th ERB 2 (1)
(37+(2)

1690 12(1-12) 1
a; = EM

n2

a, =

1699 12(1-v2) [a_‘:'

n2 E R 47t
dg0a* T12(1-v9)
a = e { ERB j| -
Result: Parameter, by using Galerkin technique for rectangular plate,
(1649 (12(1-¥2) 1 4
Parameter, a, (for rectangular) = (7) ( ER ) [(n)z (n)z }
3 I 4
a b
4900 [12(1-42
Parameter, a, (for square) = + [_(Tvl }
L3 Eh
1.15. VARIATIONAL (WEAK) FORM OF THE WEIGHTED RESIDUAL STATEMENT
We know that the general weighted residual statement is,
JwRdx = 0 _ o (115)

In this variational method, integration is carried out by parts. It reduces the continuity
requirement on the trial function assumed in the solution. So, it is referred to as the weak
form. In this method, it is possible to have a wider choice of trial functions.

1.16. COMPARISON OF DIFFERENTIAL EQUATION, WEIGHTED RESIDUAL STATEMENT
AND WEAK FORMULATION OF WEIGHTED RESIDUAL STATEMENT

1.16.1. Differential Equation

Consider a uniform rod subjected to uniform axial load g, as shown in Fig.1.26.

}—'Qu
——

Fig. 1.26. Uniform rod

The deformation of the bar is governed by the differential equation,

WO

Introduction
d%y
AE 53%9 =0 .. (1.16)
With the boundary conditions,
u(0) = 0
du
AEZ T P, L (117)

1.16.2. Weighted Residual Statement

In order to find the solution for the above mentioned problem, the weighted residual
statement can be developed as follows:

1
d?u
fw(x) [AE g +q0j| dx = 0 . (L18)
0
With the boundary conditions,
u(0) = 0
du
ABG R ... (1.19)

1.16.3. Observations on the Weighted Residual Statement

v Weighted residual statement can be developed for any form of differential equations
like linear, non-linear, ordinary, partial, ezc.

v The weighted residual statement is deVeloped only for differential equation and it is not
suitable for boundary conditions.

v The trial solution should satisfy all the boundary conditions and it should be
differentiable as many times as needed in the original differential equation.

1.16.4. Weak Form of Weighted Residual Statement

By performing integration by parts, the weak form of weighted residual statement of the
above mentioned problem is obtained as follows:

! ! !
du du dw
[w(x.)AEE L —fAEE -E-dx+fw(x)qu =90 . (1.20)
0

With the boundary conditions,

[0
(=]

u(0)

du
AE o

x=1
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In, principle of virtual work, 8U = 6H
Ldm =0
Hence, we can conclude' that a deformable body is in equilibrium when the potential
energy is having stationary value.
Hence, the principal of minimum potential energy states “Among all the displacement
equations that internal compatibility and the boundary condition those that also satisfy the
equations of equilibrium make the potential energy a minimum is a stable system.”

1.19.- SOLVED:PROBLEMS — POTENTIAL ENERGY. APPROACH

Example 1.23 | The spring assembly is shown in Fig.(i). Assemble the finite element

equation by using direct approach and potential energy approach.
l—» Fq l—» Fy F3
v — A M * Wv—l
Ky 1 Ky 2 Ks 3
— — Uy — USJ

Fig. (i).
Given:
r Fq l—w Fa [-> F3
+ VW
Ky 1 K, 2 Ka 3
—Uq — Uy — U3
Fig. (ii).

To find: Global stiffness matrix for the spring system.

© Solution: Consider the free body diagram of nodes 1, 2 and 3 as shown in Fig.(iii). Let
the displacement of nodes be u,, u, and u;. The extension of spring 1, 2 and 3 are,

[ [ [

Kidy 1 K8, Ko8a 2 K8y Kyd3 3
(@ ) ’ (c)
Fig. (iii).

We know that, Displacement,

Sy =u, 8 = uy-uy, and 8; = uz-u, ‘ (1)

;
i
i
{
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The equilibrium equations are (from Fig.(iii))
~ky 8 +k;8,+F, =0 2)
~ky 8,4k 85 +F, = 0 ..3)
~ky83+F; =0 (4
Substitute 8, 8, and 8 values in equations (2), (3) and (4).
Equation (2) = —kyuy+ky(uy—u)) = -F,
kpuy -k (uy—uy) = F
(i +k)u—-kuy = F, - (9)
Equation (3) = ~ky (=) + iy (3 —w) = -F,
by (=) ~ky (uy =) = F,
~huthth)n-kuy = F -+ (6)
Equation (4) = —ky(l-w) = -F
k(=) = Fy
—kyuy+kyu; = Fy (N
Arranging equations (5), (6)-and (7) in matrix form,
(ky + k) —ky. 0 u F|
kb (hthk) -k u =935 . (8)
0 — ks, ks u3 F3

Now, let us see the potential energy approach. Total potential energy in the system is,

T

Apply,

1 1 1
3k 5? +35.k 6% +3 ky ﬁg -Fluy-Fuy-Fyuy

1 1 1
LR (g =P +3 by (uy ~wy P ~Fyuy ~Fyuy -Fy

on
Ou, =0

kyuy+ky (uy—u)) (- D-F,
ky uy—ky (uy ~u))-F,

(ky +hy) uy —ky u,y

"

1t

Fy
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on _ : iven:
Apply, ou, - szevn.
= ky(uy—u)) tks (u3-uy) (- 1) = F,
—kyuy +(ky+hky)uy~kyuy = F, ...(10)
on
Apply, s
=% k3 (uy—uy)-F; = 0
Fig. (ii).
- = .11
ks thyuy = F a5 k= 60Nm,  F, = 100N
Equation (9), (10) and (11) in matrix form, - : ky = 75 N/m, F, = 80N
[k -k 0 uy Fi » ky = 100N/m
~ky (ke th) -k ur=9F -(12) To find: Displacements of nodes 1 and 2.
L 0 —k; ky U3 Fy © Solution: Let u) and u, be the displacements of nodes 1 and 2. Then the extensions of
Result: Finite element equation Springs are,
. 8 =uy, 8 = u, 8 =u -y
Mtk —k 0 ¥, F, . 1 1 2 ! 3 2= U]
—ky  (kythy) -k up =1 F We know that,
L 0 —ky ky U3 F, Minimum of potential energy principle,

Determine the displacements of nodes I and 2 in the spring system ™ = Strain energy ~ Work done

shown in Fig.(3). Use minimum of potential energy principle to assemble equations of

1 1 1
T = 3 k8] 43 k8]t ks 52 1004, - 80 u,
equilibrium.

, 1 1 1
g K1 = 60 Nim : n= gk Uy k] g kg - u,)2 - 100 u; ~80u, (1)
(84) on

K3 = 100 N/m s Now —— =0
100N 2 AW 80N ¢ Ou,
T z = Ry uy +hy kg (y — ) (= 1)~ 100 = 0
Kz =75 Nim 1% 2% 3\#2 1
g'—'\g\)'v— = ey +hy + 3wy ~kyuy = 100 A2)
2
Similarly, %= 0 = y Gy —uy)~80 = 0
Fig. (i. Y Bu, 4 3wy
~kyuythyu, = 80 (3)
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Arranging equation (2) and (3) in matrix form,
kyvhytky —k3 ] [y 100}
|i —ky kziH"z}:{SO
Substituting the values of k,, k, and k3, we get,
60 +75+100 -100 Uy 100}
[ -100 100]{u2} - { 80

[ 235 -100} wl {mo}
-100 100] | u, 80

235u; - 100w, = 100 28
~100u, +100u, = 80 .5
135u, = 180
Lo 180
T

u, = 1333

Substitute the %, — value in equation (5)
—100(1.333)+ 100 u, = 80

Result: Displacements of nodes,
1333 m
uy = 2.133m

u =

1.20. RAYLEIGH-RITZ METHOD.(VARIATIONAL APPROACH)

1.20.1. Introduction

v Rayleigh-Ritz method is a integral approach method which is useful for solving
complex structural problems, encountered in finite element analysis. This method is
possible only if a suitable functional is available, otherwise Galerkin’s method of
weighted residual is used. By using this method stiffness matrices and consistent load
vector can be assembled easily. This method is mostly used for solving solid
mechanics problems.

v The phrase “Variational methods” refers to methods that make use of variational
principles, such as the principles of virtual work and the principle of minimum

potential energy in solid and structural mechanics, to determine the approximate -

solutions of the problems.

PEP——

Introduction

v In Rayleigh-Ritz method for continuous system we deal with the following functional.

n
Potential energy, 1 = ff(y,y',y”) dx

1

. (126)

v In our terminology, a functional is an integral expression that implicitly contains the
goveming differential equations for a particular problem.

v’ Total potential energy of the structure is given by,

Internal External
= 9 potential 1 — § potential

n =
energy energy
= Strain energy — Work done by external forces
n = U-H

v In this method, the approximating functions must satisfy the boundary conditions and
should be easy to use. Polynomials are generally used and sometimes sine and cosine
terms are also used as approximating function.

v/ In general any exact function can be represented as a polynomial or trigonometric
series with undetermined constants as shown below.

y = agtayxta;xttayxd+. .

or

. X . 3nx
= a sin—; ta,sin—; +
y 1 ] 2 1

The constants ag, a,, a, are unknowns known as Ritz parameters of the curve. When the
parameters are infinite, the particular polynomial tends to match the exact value. So, the
accuracy depends upon the number of parameters chosen.

v The following two conditions must be fulfilled by the approximating function.
1. It should satisfy the geometric boundary conditions.
2. The function must have atleast one Ritz parameter.

-
v In general, a Rayleigh-Ritz solution is rarely exact except in some special simple cases,
but it becomes more accurate with the use of more parameters.

¥ This method can be understood clearly by solving the following examples.
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1.20.2. Solved Problems (on Rayleigh-Ritz Method)
Example 1.25 | A simply supported beam subjected to uniformly distributed load over

entire span. Determine the bending moment and deflection at midspan by using Rayleigh-
Ritz method and compare with exact solutions.

Given:

w/unit length

A B

x=0 x=1

Tofind: 1. Deflection and Bending moment at midspan.
2. Compare with exact solutions.
© Solution: We know that, for simply supported beam, the Fourier series,
y = Z a sm 1 % s the approximating function.
=13

To make this series more simple let us consider only two terms.

3
Deflection, y = a, sinnT)f +ay sini;I (D)

where, a;, a, are Ritz parameters.

We know that,
Total potential energy of the beam, = = U-H .. (2
where, U — Strain energy.
H — Work done by external force.
The strain energy, U, of the beam due to bending is given by,

(%)z dx . 3)

3nx (3
% = alcos%x (1)+ a, cos 1; ('ll)

am  omx . a3 3mx
Tycos 7 cosTy

Introduction @
a2 AT omx xm 31r 3nx 3n
= e 7 sin 3~ 7 X7 2 sin T X
-nlta;  omx 9n? . 3nx

1_2 SH‘IT - a, 1_2 sm—l—'

dy [ am? ax 397 3px
dx2 * 2 SlnT-Tsm 7

.. (4)

.o d2 .
Substituting Eﬁ value in equation (3),

!
El am gy o’ 3my
DU:ZII:—- I3 smT—I sml]dx
0

1
El a 92 2
= 7f[ sin—— x 212 sinMTx:| dx
0

i
El n¢ 2
= 7x7f’:a,sin%{+9azsin}%] dx
f .
El =4 3nx
U = Exl—,,{[alsm27+81a25m2 i +2a[sm 7 9azsm 7 ]dx
[ (@+bP=a%+b2+2ab)
!
El n4 3nx
U = 'Z—Tf[afsmz‘l‘ﬂﬂ azsmZ i +18ala2sm , sm 7 ]dx ... (5)
0
! o
PRNPY.> _( _ 2n) . l-—cos2x
{alsm 7 dx = a; {2 lL-cos=;™ |dx - sin?x = 2

(l - cos‘z‘%‘i)dx
! 1

[fdx fcos—‘dxil
0 0

I
‘o e ~

w8,
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1.94
. a_? q sin=7
=7 (x)(!— 21
1 0

RPN no)]
= P) - ~2“ sin fi — sin

@ ! all o= 0 sin0=0
=5 [1_276(04))]— > [~ sm2jl:— ; sin0=0]

. (6)
Similarly,

I
f 81 a% sin?
0

3nx 2 (L bmx
7= 81a2f2(1—cos 7
0
81a?r ! ! P
= zz[fdx-fcos%idx
0 0
sin=y
| e
1

"

[
Ml
~
-~
|

I
(-]
Nig
N
1 ™3 | 1
—_
=
it
&

[+ siném =0; sin0=0]

(D

CEnmT e

Introduction

! !
. . 3% . .3
IISalalsm%sme = 18a,ay jsml;ism%

0 0

]
3
= 18aa, fsini]t£ sin%

0

. 2 4nx
= 18a,ay fi(cos%—cos’%
0

[ o sinAsinB =

1 1

18a;a 2
= -—2]—2 [fcos%dx - fcos

0 0

2mx \ !

18a,a,

sin~5— sin
i

Jas

cos (A—B)—cos (A +B)

]

4
iy, ]

!

2 2n
1 0

0

= 9a,a,[0-0]=0 [~ sin 21t = 0; sin 41 = 0; sin 0 = 0]

[
X 3mx
= fISal a, 'sinT sin =~ =

0

Substitute (6), (7) and (8) in equation (5),

¢) = u 2 4

Strain energy, U =

We know that,

Work done by external force, H =

1
e ~
e
<
n
=
i
~—
e
/N
R
o
2.

(8

)
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!

i 0

—~ayl

n

2ay1 2a21}
n * 3n

H =

Substitute (9) and (10) values in equation (2).

Q>

= 7

U-H

Eln!
413

(a}+81al) -

a,!

),
x AT ),

al
[H-1] —’3?("1—1)]

2ol

T

(

T o

(c S31|:x)’]
0520k
! 0

[ cosO = 1;
cosm = -l;
cos3n = -]

.. (10)
a
a.+32') (1)

For stationary value of 7, the following conditions must be satisfied.

o _

%a, = 0 and
omn _ Elnt

= da, 4D
Elnf 20l

= WxZa, T
_ dolt

= 9“7 B

on

Oa, B

20!
@Qa)-"—=0

Introduction

1.97
. o _ Blzt 200(1) _
Similarly, Ba, = 4B (162 a,) - p (3) =0
Elnt . 200(1 ‘
= p62a) = =3
N _200 4B 40k
%7 3 X Te2Eint ~ 243 El75
o delt
% " 3EIS
. mx . 3mx
We know that, Y = apsinTT o+ ap sinT
Substituting @, and a, values, i’
N _ 4delf mx o 4olt 3mx
YT B T T a3 Y - (12)
\ . !
We know that, maximum deflection occurs at x = 3-
. l. .
Substitute x =7 in equation (12),
! il
_deM T 4ot "2
= Ymar = L3 S0 * 243 E1 s S0 77
_dof x o 4ol 3x
= Ymax = Bl 75 M2 ¥ 223 Bl 02
_ dolt 4ol
Ymax = Elps T 243 Bl 10
_4031“[] L] csinEe gin e
TEw ! Tm sy T hosing=-l
4ol4 398w /4
= Bl (0.9958) = ElnS
o4
= VYmax = 0.0130 B ... (13)
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We know that, simply supported beam subjected to uniformly distributed load, maximum
deflection is, ‘

o4

Ymar = 0.0130 B ... (14)

From equations (13) and (14), we know that, exact solution and solution obtained by using
Rayleigh-Ritz method are same. :

Bending Moment at Mid épan
We know that,
a2
Bending moment, M = El EXZ

..(1%)

From equation (4), we know

dy aym? gy @912 3gx
dx? = - 2 SlnT"‘ 2 sm 7

Substituting a; and a, values,

- dy |:4m14 n? . x d0 14 9n2 | 3nx:|

a2 T T Em CENT P Es R T
: . 1

Maximum bending occurs at x =7

I i

TR R TagEs 2

B |:4ml4 2 .z

w2 .n _40lt 92 . 3
Blas X Sing

243E1 25 ¢ RSy

40 14 12 4014 9n2
= '[Elnﬁ 7O ¥ 23w *1_2(“”}
[ sin%=1; sin%=ll]
_ [#Pr erw
T 7L Eln® T 243EInS

402 36l
" T EInd " 243EIn3

PN

Introduction

402 0.1480 2 o 2
TTEHe T ERs 38 ED
d%y w2
5 = -0

.o dYy . . .
Substituting value in bending moment equation,
dx? g q

ol?
(15 = Meenge = EI x = (0.124) 5

= M, = -0.1240 2

centre -+ (16)
[Negative sign indicates downward load]

We know that, for simply supported beam subjected to uniformly distributed load
maximum bending moment is,

>

ol
Mcen!rc = T

Meemze = 0.1250 12

(7

From equation (16) and (17), we know that, exact solutoin and solution obtained by using
Rayleigh-Ritz method are almost same. In order to get accurate result, more terms in Fourier
series should be taken.

Example 1.26 | A beam AB of span ‘I’ simply supported at ends and carrying a

concentrated load W at the centre ‘C’ as shown in Fig. Determine the deflection at
midspan by using Rayleigh-Ritz method and compare with exact solutions.

A C B
57
[P
Given:
A C B

To find: Deflection at midspan, y,,,, .

© Solution: From example (1.25), we know that,

3
Deflection, y = a sinn/—x +a sin% (1)
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El n4

Total potential energy of the beam is given by,

: = 25 (a)) = W
n = U-H ) i
where, U -> Strain energy. r 5 o = 2B8W ®
i T 4
H > Work done by external force. ; Eln
The strain energy U of the beam due to loading is given by, ) ) F) El n¢
; ( Similarly, L AR 162a,]1+W = 0
El (dyV ) da, 43 2
0 . = S5 (62a)+W = 0
From equation (9) in previous example problem (1.18), we know that, |
_ El=* 2 4
U = %75 la +8143] - 4 : = 812E[[3n a, = -W
Work done by external force, H = Wy, . .. (5
nx 3nx ; 2B W
We know, Deflection, y = a;sin7 + aysin=~ i = 9 = S Elat - (10)
! i
In the span, deflection is maximum at x =7 We know that,
u% 37‘% Maximum deflection, y,.,. = a,~a,
= Ypar = @) SN aysinTy— IBW  2BW  2BW 1
x . = Ymax = E]n4+8151n4=51n4('+ﬁ)
= ap smy + a, sin ="
28w
- ® = Brar (10123)
csinEee sinEeg :
[sing =15 sin%=-1] { _20USPW WP
Substitute y,,,, valve in equation (5), 3 El o4 i El
= |H = W(a,-ay .. (D : W3
Ymax = 48.1 E} (1D
Substitute U and H values in equation (2),
o 1= E41 11134 [af + 81 a;] - W(a,-ay) ® We know that, simply supported beam subjected to point load at centre, maximum

deflection is,

For stationary value of 7, the following conditions must be satisfied. : _wB 12
o o " Ynex = 38 El - (12
2ay = 0 ™ 5, =
5 ! El né 2 From equation (11) and (12), we know that, exact solution and solution obtained by using

n n

20 = 4 [2a,]-W =0 Rayleigh-Ritz method are almost same. In order to get accurate result, more terms in Fourier
a ’ series should be taken.

El o4
= pRa)-VW

]

0
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Example 1.27 | A simply supported beam subjected to uniformly distributed load over

entire span and it is subjected to a point load at the centre of the span. Calculate the
bending moment and deflection at midspan by using Rayleigh-Rit; method and compare
with exact solution.

Given:

w wlunit length
A B

x=0 x=l

To find: 1. Deflection and Bending moment at midspan.
2. Compare with exact solutions.
© Solution: From Example 1.20, we know that,

3
Deflection, y = a, sin% +a, sin% (D

Total potential energy of the beam is given by,

n=U-H . (2)
The strain energy U of the beam due to bending is given by,
!
El r(dyY
v-5 (&) @ - ®
0
From equation (9) in Example 1.18, we know that,
El n#
U =S5 la+814}) e (®
Work done by external forces,
!
H=fcoydx+Wy,m ()

0
From equation (10) in Example 1.18, we know that;

!

a
f_wydx = z—il(aﬁ?z) ... (6)
0

23

3
We know that, y = asinT tay sini;i

- . !
In the span, deflection is maximum at x =7

Introduction 1.103
nX5 31!:%
> Vo = alsinT + a, sin—;—‘
. . 3n
= a;siny + a, SNy~
Ymax = 41— (D
[ sing=1; sin37“=-1]
Substitute (6) and (7) values in equation (5),
20/ a '
S)=> |H = T(aﬁ?] + Wa;-a,) .. (8)
Substituting U and H values in equation (2), we get
El 14 20! a,
> n=plaj+8ia] - [T(a]+?)+W(a|—a2):|
Eln4 20! a
=T [af“‘slaﬁ]-T(ﬂﬁ?)*w(araz) -9
For stationary value of , the following conditions must be satisfied
il = 0 and ?n =0
da, da,
on Elz* 20/
> da = ap Ca) =T W=o0
Elz* 20!
= gpa, W=
El n4 20!
: = = vV
2 (20l
= a = gt W ... (10)
; i on _ Elxt 211,y
‘7 Similarly, 3a, =90 (162 ay) ~ 7 \3 +W =0
|
| Eln! 20!
‘ = G5 (162a2)—?+w =0
Eln4 20!
= 43 (162 ay) = e
_ 4P (20l )
. "2‘162517!4(37:‘“’

= - (M—w) : 11
27 BB 3n -
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From equation (7), we know that,

Maximum deflection, y,,. = a,-a,

28 (20l 20 (M )

= Ymar T Br gt ( n +W)_ giEA (31 W
_ 4dolt . 2W B 4o 14 2w B

= Ymex = ElxS T Eln* ~ 243ElxS " 81Eln?

4(;)1“(I _1‘)+2W13(]+L)
" ElnS 243 El n4 81
398w 4 202W P

El n° Elnt

Wi

ol
[00130 B + 0.0207 EI:}

ol W]
Vo = | 00130 g+ 0.0207 "~ | e (12)

We know that, simply supported beam subjected fo uniformly distributed load, maximum
deflection is,

S el
Ymax = 384 El
Simply supported beam subjected to point load at centre, maximum deflection is,
_wB
Ymax = 48 El
. S5 et WD
So, Total deflection, y,, = e mEl STy
1 WI
Ymax = 00130 / + 0.0208 —— .. (13)

From equations (12) and (13), we know that, exact solution and solution obtained by using
Rayleigh-Ritz method are same.

Bending Moment at Midspan

We know that,
dy
Bending moment, M = EI drl ... (14)
From equation (4), we know that,
d? ayn? oy a9mr  3ny
E{XZ = —[ 12 smT+ 2 sm'—l“

i

E
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Substitute a; and a, values from equation (10) and (11),

oy (28 (e

2
e . mx
= dx? Elnt\n © )xﬁs'n7+

2B (2(01 W 9n2 3nx
SIEInd \3n — W )* 2 xsin

Maximum bending occurs at x = é

1l:><£ 3 !
_ 2P (200 2 2 2B (20l 9n2 "2
"[Eln“( n +w) AL 8]El1:4( ‘W)"IT”"’ 1 ]

)

i
—
o

=
—
0
&
™
€

! 23 20! 9?2
n ) lZ(])+81EIn4(3n _WJX r (—1)]

&5 sin%= 1% sin'32£=—-1]

21 (20! 20 (20
Elnz( +W)“9n2m(3n“w”

4o 2 N 2w/
Eln? ' Eln2 ~

402 . 2WI
2773 El © 9n2El

_ dol? 2Wl+ 2WlI
Elx ~ 2773El © Eln? 9 n2 EY

[
85 0-4) B0+ D)]
[

3.8518w 2 wi ]

Eiw T 2225

2 W
5= [0124 G+ 02 —l}

Ld? :
Substitute a% value in bending moment equation,

(14) =

a’
Mcentre - E‘% = _El|:

or wi
0.124 il + 0.225 El ]

Meenre = —(0.124 @ 12 + 0.225 W ... (15)

[Note: Negative sign indicates downward deflection}
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We know that,. simply supported beam subjected to uniformly distributed load, maximum
bending moment is,

o2
MOCH"E = T

Simply supported beam subjected to point load at centre, maximum bending moment is,

w!
MCCI'I[TC = T
2
Total bending moment, M e = mT. + %
M 0.1250 /2 + 025 W1 ... (16)

centre,

From equation (15) and (16), we know that, exact solution and solution obtained by using
Rayleigh-Ritz method are almost same. In order to get accurate results, more terms in Fourier
series should be taken.

A bar of uniform cross section is clamped at one end and left free at
the other end and it is subjected to a uniform axial load P as shown in Fig. Calculate the
displacement and stress in a bar by using two terms polynomial and three terms
polynomial. Compare with exact solutions.

x=0

Given:

: |—> Load, P

x=1

x=0

To find: 1. Displacement of the bar, du.
2. Stress in the bar, o.

By using two terms and three terms polynomial.
© Solution : We know that, Polynomial function for displacement is,
u = agtajxtaxttazxdtaxtt.. +a,x"
Case (i): Considering two terms of polynomial,
ie, u = ag*ayx (D)
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Apply boundary condition,
atx=0, u = 0 '
= 0= g4+0
=
substituting a;, value in equation (1),
= u=ax . (2)
du
a)
We know that,
Total potential energy of the bar, 1 = U-H . (3)
where, U —> Strain energy of the bar.
H — Work done by external force of the bar.
EA (du¥
. 3
Strain energy, U = 2 f(dx) dx
0
EA |
=5 f (ay)? dx
0
EAd,
=2 Ix)
EAdll
= 3 . (4)

Work done by external force, H = IP dx = f puAdx [ Load, P=p u A]

0 0

1 1

=pAfudx =pAfa,xdx [ u=ax]

0 0

!
x2 pAa
- pna[Z] - PAn
P 120 2 [2]

pAa 2
I:‘

. (5)
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Substitute U and H values in equation (3),

EAafI pAa 2
3) = L R

For stationary value of =, the following condition must be satisfied.

on
ie., 9a, =90
EAQa)! 2
., EAQadl par
2 2
Al2
> EBAaql-85--0
2
= EAa,l = P—f;—’
_ el
= a = 3§
Substitute @, value in equation (2),
= u = ax ='£Lé)( X
_ el
YT ET

! .
We know that,  Extension of the bar, du = uj—uy = %xl—o
[vAtx=1, u=u, Atx=0,u=uy=0]

1
T E

. oF
Extension or displacement of the bar, du = E ... (6)

du _ o ol -4
Stress inthe bar, c = E -~ ax = EX 3 [ X u~2Exx:|

i
Stress in the bar, ¢ = 92‘ .. (D

Case (ii): Considering three terms of polyqomial,
ie, u = agtayx+a;x? .. (8)

Apply boundary condition, atx=0, u = 0

Introduction

= 0= qg;+0+0

=>[a = 0] \

@B = u=ax+tayx? .. 9):

Substitute a, value in equation (8),

du
dx = Qitlaxx
We know that,
Total potential energy of the bar, # = U- ... (10)

i - EA (du
Strain energy, U 2 ( o )
0

EA
= 7f(a,+2a2x)2dx

EA
=5 [1at+Qayxp+2a, 20,51 dx

o

[ (@+by=a’+b2+2ab]

!
EA
= —z'f[afdx+4a§x2dx+4a, a, x dx]
0
!

%[ (x)+4a %3)1-#4(1[512(%2)0]

EA
- Ba- 0)+~(13 0+ 320 0]
EA al
U:T[”I+T 13)+za|a2(12)I (1))

Work done by external force,
! ]

H= dex = fpuAdx
0 0

[ Load,P=p u A]

/ !

= pA fudx = pAf(al'x+a2x2)dx
0 0
!

= pA [[ayxdx + ayx2ds]
0
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- a2 (2]

= pA[%(lz—O) +93—2(13-0)]

a a
H= pA[‘EI‘IZ +3B ] . (12)

Substitute (11) and (12) values in (10),
(1)=> = =1U-H

2
EA 4a a.,, %
= “‘—[afl + T2(13)+2a1g2(12)] - pA[712+-3‘13 ] .. (13)

L)
For stationary value of =, the following conditions must be satisfied.
o om on _
ie., 2a, = 0 and day =90

o _ EA r
= Pa, —2—{2a11+0+2a212}—pA[7+0 =0

[}

= %[2a,1+2a212]—pA[§}= 0

e EA[a|I+a212]—p/;—12: 0

= EA[a;l+a, 2] = p—Az-l'—z

> - al+a,l? = %g

= aytayl = % ... (14)
Similarly, gaiz =0

E 8a B
= —;—[o +3iP+2a 2 ]—pA[OJr'}‘:]

EAT 8 Al
_[§a2[3+2a|]2j| = 9-3—

Ll
(=]

2
8
= 5a213+2a,12=-%3A—

8
= §a213+2a,12 = 3

v

Introduction

4
= 30,8 + a2 =
4
= 3a21+a| =
4
= a, + ‘;‘azl =
e a,+1333a,1 =
“Solving (14) and (15), a,ta,l = %
a,+1333a,1 = %
_ oL _pl
al —133a,1 = 55 - 5
l
-0333a,] = f’g(%-%) =
~0333a,1 = %
= -033a, = g¢
-p
= a = g
Substituting a, value in equation (14),
=2\ _ oL
(14). > a|+(2EI)— 5F
Lol _pl
' 72E " 2E
_ ol ol
@ T EYIE
o= 2L

We. kriow that, u

Substitute a, and.a, values, u

= ayx+ayx?
= %Ix “é%xz

3E

.(15)
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u= %[11—523':] - +..(16)

- -Finite Element Analysis

Atx =1, u = u, substitute in equation (16),

= u =

| mo
—

1

=

1
oo}

x
LN A

2 =0y o
We know that,  Extension of the bar, Su = u;—uy = %fi_ =0 [ Atx=0, u=u;=0]

_oP
= 2E

_er . (17)

Extension or displacement of the bar = E

From equation (16), we know that,

= 2y _ %
o §(e-%)
2x
%= 8(1-3) %o
. du /-
Stress in the bar, ¢ = Ed =Ex E(l x)=p{-x)

[ Stressinthebar, c = p (I-x) ] .. (18)

Exact solution: We know that, actual extension of the bar,

! / e
Pdx _ rpAx o p=
MZJE_IAEdX [+ P=pAx]
0 0
o o 2] 2[121
B =Efxdx‘El:?]o=E 2
— - 0
2
5 = &2 - (19)

From equation (6), (17) and (19), we know that total extension of the bar obtained is exact
in both the cases.

2 -Introduction - 1.113

. . 2

Result: 1. Displacement of the bar, Su = % [Two terms polynomial]
-pl? )

Su = 2E [Three terms polynomial]
. . o! : .

2. Stress in the bar, ¢ = P [Two terms polynomial]

6 =p(-x) [Three terms polynomiaf]

] A linear elastic spring is subjected to a Jorce of 1000 N as shown in

Fig. Calculate the displ and the potenti l energy of the spring. i

Y F=1000N

k = 500 N/mm

Given: Force, F = 1000 N
Stiffness, k = 500 N/mm
To find: 1. Displacement, x.

2. Potential energy, =.

© Solution : We know that,

Total potential energy, 1 = U~H . (D

where, U = Strain energy (kx) XX

H
Substitute U and H values in equation (1),

Work done by external force. = F x.-

= 1= %(kx)xx - Fx

1
n o= Ekxz—Fx .. ()
- on
Forstatlonary valueof T, s 0
1 N
= Exzkx—F =.0..
PR g ek b

= 500 (x)-1000 = 0
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= 500x = 1000 ‘
=

Substitute x value in equation (2),

@ > n o= %kxz—Fx - %(500)(2)2-1000(2)
n_= —1000 N-mm
Rél'u{t: 1. Displacement, x = 2mm
h 2 Potential energy, m = - 1000 N-mm

Consider a 1 mm diameter, 50 mm long aluminium pin-fin as shown
in Fig.(i) used to enhance the heat transfer from a surface wall maintained at 300° C.
Calculate the temperature distribution in a pinfin by using Rayleigh-Ritz method. Take, k =
200 w/m°C for aluminium h = 20 w/m?°C, T, = 30°C.

h Teo
Wall ST
Tw R
L |
Fig. (i)
d°T Ph
Kgr = A (T-T)

T(0) = T, =300°C
q. = kA %(L) =0 (Insulated tip)

[Anna University, M.E. (CAD/CAM) Apr/May 2006]
Given: The governing differential equation,

Diameter, d = Imm = 1x10-3m
Length, / = 50mm = 50x 10-3m
Thermal conductivity, ¥ = 200 W/m °C -
Heat transfer coefficient, # = 20 W/m2 °C

Fluid temperature, T, = 30°C

Introduction

Boundary conditions, T(O) = T, = 300°C

I

dt
g = kAG(L) = 0
To find: Ritz parameters.
© Solution: The equivalent functional representation is given by

n = Strain energy — Work done

1]

U-w

L 2 L
ey ks
= irfz k(dx)dX+f2 A (T-T, )P dx -q. T,
0 : 0

his

L L
_[Ly(ar L P
e [ak() e [ oo
0 0

Assume a trial function, let T(x) = ag+a, x+a,x?
Apply boundary condition,
at x=0, T(x) = 300
300 = agy+a(0)+a,(0)2

Substituting a,, value in equation (3),

T(x) = 300+a,x +a, x?
dT
xS @ t2lax

Substitute the equation (4), (5) in (2)

! 1
1 1 Ph
n= [ 5k@ +2axRdr + [5 (300 +a, x +ay x2 300 dx
0

0

(1)

...(4)

(5
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h
k(a, +2ayxdx + f‘ Pk 20+ a,x +ay 520 ds
0

1
2

A
I
© e~

[ (@a+bP=a?+b2+2ab; (a+b+cP=a?+b2+c2+2ab+2bc+2ca]

i
k
n = Ef[af +4a§ xX+4a a,x] +
0

y v,
%/g f[(270)2+a X} +ad xt+ 540 a;x+2aya; x3 +540 ay x2)] dx
0 ' :
50x 1073 Co
k 4ad x3 4a ayx? !
= | a it —— . )
204 3 P 0 ,
5 . , 50x 103
3 5 2" 2a,a,x* 540a,x
Ph ay x a7 x 540 ay x ) a3 2 }
7Y [729oox+ : e e ,
[ 1=50x 103 m}
k 402 (S0x 109 4a, a, (50 x 1032
n=3 (50x 103y a? + 3 — :
ok @ (50x 1039 (50 x 103
+5a | 72900 (50x 10 + 7 + T
540a,(50 % 1099 24, ap(50 x 103" 540.a,(50 x 103
+ 3 + 7} + R
200 ; nx10'3><20 :

n=5 [50x10'3a2 +1.666 x 10 2 +5x10‘3a,a2]+
- x(10‘3)2

(3645 +4.166 x 105 2+625xr<r8 2 40,675 +3125xl0‘6a, a2+00225a2]“

n= [Sa +00l66aZ +050,a1]+[l458x107+]66a +2>x103
+2700a1+0125a|a2 +900az]
T = [6.66af +0.0191 a% +0.625 a; @y + 27000 a; +900 a, + 14.58 x 107]

- Introduction . . 1117

on
Apply, 5~ =10
Pply. ba, N
= 13324, +0.625a,+27000 = 0

= 13.32a, +0.625 a, = -27000 ...(6)

Apply, aaa =

=% 0.625 a; +0.382'a, +900 = 0

= 0.625a, +0.03822, = -900 o )

Solve the equations (6):and (7) ‘ L .
133240, + 0.625a, = -27000 ' .(6)
0.625 a; +0.0382 a, = -900 (T

{6) x 0.625

> 8.325a, +0.3906 4, = - 16875 : {8)

() x-13.32

= - —83254,-0.50884a, = +11988 (9)

~0.1182a, = -4887

0.1182 a, = 4887
|
Substitute a, value in equation (6),
13.32.a, +0.625 (41345) = - 27000
= a, = ~3967.01
Substitute ay, @, and a, values in equation 3)
= 300-3967.01 x +41345 x2

Result: Temperature distribution in a pin-ﬁn

' = 300~3967.01 x + 41345 x2

-Example 1.31 Usmg Raylelgh -Ritz method, - determine - the expressions  for

displacement and stress in a fixed bar subjected to axial force P.as shown in Fig.(i). Draw
the dlsplacemem and stress vanatmn diagram. Tt ake three terms.in dtsplacemenr ' function.

[
1 i - E = Young's modulus ]
A= Cross-sectional area
L. P
2 2
x=0 " x=l2  x=1
Sl LS el el
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Given:
PR NP - P
I |. 2
x=0 x=112 x=1
Fig. (i).

To draw: Displacement and stress variation diagram
© Solution: We know that, polynomial function for three terms,
ie, u = ayta x+a;x?
This function has to satisfy the boundary conditions,
(i) at x=0, u=0
(i) at x=1, u=0
Apply boundary condition (i), we get
Apply boundary condition (ii), we get
0=ayta l+a,
. From equations (2) and (3) we get,
0=al+a, I
a; = -ayl
Substituting a and a; values in equation (1),

u = 0-aylx+a,x?

! 1 LY
Atx=7, u =@ -3 )3
a, I
U= -

We know that, Total potential energy of the bar,
n = U-H
Where, U — Strain energy of the bar,

H —> Work done by external force of the bar.

(1)

...(2)

..(3)

(4

(5)

1.(6)

Introduction

" .. Potential energ

!
EA du \?
T = T I(E) d)\:~pul
0

We know that, u = a, (-/x+x2)
du

= e a, (-1+2x)

Now,

For stationary value of =, the following conditions must be satisfied,

ie.,

1
EA 2 —0212
n= 5 [[oc1+2x) dx~p( n
0

EA ,

0

4x3

N

3

B 2 (2) 4 poy L

e a3 tray

on
Oa,

EA B 7
2 (2a2§)+px =0

!
BAayT =p7

a

4EAl

. 2
i /i
5> a4 f(12+4x2—4lx)dx +tpayz

!

02[12\‘+'——2/\‘2:I + aE
273 S PO I

4 2
5 a5 [/3+ ;2/(/%}} +pazlz

(7)

.(8)
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. _ du
*. Stress in the bar, ¢ = de

= Ea, (-I'+2x)
. -3Ep
= 4EAI[—1+2x]
=32y 0y
TV
We know that,
3
Atx=0= Oy = Oi=p =4“% )
Atx='l‘:> 6, =0 _1=0
2 ! x=3
3p
Atx=1= 0y T Ox=t = ~%4A

The variation of displacement and stress diagram are shown in figure.

=3pP//16

Parabolic

x
Fig. Variation of displacement
3P
A
*) o
)
-3P
4A

Fig. Variation of stress

Introduction” = : ) . [iam
Example 1.32 | Consider the d}ferenna[ equatmn “for” a problem such as
4y

ax? +300 x’ 0; 0 sx <1 wtth the boundary conditions, y(0) = y(1) = 0, the functwnal
corresponding to this problem to be extremized is given by
‘ L (Y
cr= (142 2
I f{ 2(dx),+300x y}dx
) .

Find the solution of the pmblem usmg Raertgh thz method using a one term solution
isy=ax (I-x3).

R,

Given: Differential equation,

@y
axznooﬁ

[}
e
=]
A

%
IN

]
<
.

Boundary conditions: - y(0) = y( D
Hx=0;y =0
@)x=1,y =0

4 2

= f{—% (%) +300x2y-}dx
0

Trial function, y = ax (] ~x3)

To find: Solution of the problem] by using Ray]exgh thz method
© Solution: The trial-function i 1s,

- “v(l__'x]) .

(1)

soawmdaxds

= (a-4ax3 ) : ()
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We know that,

2
-;‘ (%) +300x2y} dx

i

Substitute the equation (1), (3) in (4)

]

; .
f[ﬁ%(a —4ax3)?+ 300x2 (ax»ax“)} dx
]

1
f[-% (@ +16a? x"—8a2x3)+(300ax3—300ax6)]dx

o

1
L PEAUNIPINE il BN PN 2 PPN E 4
-3(4 x+16a 7 =8ayy 0 4 7

—% a2 += a2—2a2}+7a—§$a
—gzi—ﬁa2+az+ma~320a
0
%—%(2a)+20+‘3‘39—¥ =0
—11—'17é a+2a+¥—3—20‘ =90
. -16a+7a _ =2100+1200
ke 7 - 28
ie, -9a = —900x§7§
a =125

Hence the solution is,

Result: Solution, y =25 x(1 - x3).

I

(8

Introduction
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1.21. APPLICATION TO:BAR ELEMENT

1.21.1. Bar Element Formulated from the Stationarity of a Functional

s
"

x=0|—‘1——*—|x=1

— Uy, Fy

— Uy, Fy

Fig. 1.31. Typical bar Element

Consider a bar element with nodes 1 and 2 as shown in Fig.1.31. u) and u, are the
displacements at the respective nodes. So, #, and u, are considered as degrees of freedom of

this bar element. [Refer Chapter 2, Section 2.6.3, equation no.(2.21)).

[Note: Degrees of freedom is nothing but noded displacements.]

u = Nyu +Nyu,

I
|
1

Where, N; =
N, =7
Substitute the N, N, values in equation (1.27)

e (el

The strain energy stored within the element is given by,

AE (du\?
2 (dx) dx

u =

© ey ~

,ﬂ(uz*m)
=
A
u=7( “f
- 2

.12n

.. (1.28)

.. (1.29)

.. (130)
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When there is a distributed force g, acting at each-point on the element and
forces F at the nodes, the potential of the external forces is given by,
! A
H = fqoua'x+F, uy +F2uz‘ A -
0

uy tu,
= 4, 2 I+F u +Fu, [cu

I -
H = go5 (u +u)+Fug +Fuy

Thus the total potential energy,

n = U-H
AE Gn-u)? ) -
mo= o T —do7 G ) ~Fuy -Fru
on
ApplY, 5, =0 . .

AE 90!
= -37 x2(u2—u,)—‘2—~F] =0

AE 90!
7 (uy—uy)=-—~ -F =0
AE !
= -y = i;—+F]
. on _
Similarly, duy =0
AE do!
= 37 %2y -u)- 5 -F =0
AE 40!
T mu) = 5T HE
Arrange the equation (1.33) and (1.34) in matrix form, we get,
%!
AL ()
L=t 1] {u g6 F,
2
(k] fu} .= {F}:

concentrated

U +u,
T2

. (131)

...(1.32)

... (133)

1.21.2. One-dimensional Heat Transfer Elements Based on the Stationary of a

Functional

Consider.a bar element with nodes 1.and.2 as.shown. in Fig.1.32. T| and T, are the
temperatures at the respective nodes. So, T and T are considered as degrees of freedom of

this bar element.

Introduction

Fig. 1.32. Heat transfer elernent
Tx) = N| T, +N, T,

w0~ (15 -3

We know that,

The strain energy stored within the-element is given by,
1 ¢, (dTY?
u=3[# (5) dx
0

Potential energy of external force is given by
/

H= [g,Tdr+Q,T, +Q,T,
0

The total potential energy,
n=U-H

! 1
-1 dry
=3 fk(dx) di- [qTdr-QT,-Q,T,
0 Coe0

From equation (1.37),

4a _ 1 1
T ST T
dr

1
ax = 7 T-Ty -

Substitute the equation (1.41) in.equation (1'.4(5),‘ S

1
0 \

. (138)

.. (139)

. (1.40)

. (1.41)

R - - !
e[ aema] wt [ eTason-ar,
D . ¥ . »
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2 _&
¢ = Ve RV}
12 60
= x2+ﬁ(-2.77) =1
-
12 _
@ = I+Zx2—4)c3 =0
1 2
= x,+E(6.66)Az(—2.77) =0
-
Result:  x = -3.05
¥ = 6.66
x3 = 277

Checking: Substituting x,, x, and x; values in equation (1) or (2) or (3),
=> 2x t4x+2x = 15
= 2(-3.05)+4(6.66) +2(-2.77) = 15

So, our answer is correct.

1.24, ADVANTAGES OF FINITE ELEMENT METHOD

1. One of the major advantages of FEM over other approximate methods is the fact that
FEM can handle irregular geometry in a convenient manner.

. It handles general load conditions without difﬁculty.

. Non-homogeneous materials can be handled easily.

. All the various types of boundary conditions are handled.
. Dynamic effects are included.

[>T I )

. Vary the size of the elements to make it possible for using small elements where
necessary.

<

. Higher order elements may be implemented.

oo

. Altering the element model with different loads, boundary conditions.and other
changes in the. model can be done easily and cheaply.

. DISADVANTAGES OF FEM

v It requires a digital computer and fairly extensive software.

v’ 1t requires longer execution time compared with finite difference method.

Introduction ‘
v Output result will vary considerably, when the body is modeled with fine mesh when
compared to body modeled with course mesh.

¥ In finite difference method, the governing differential equation of the phenomenon
must be known whereas finite element method does not require to express fully.

1.26. APPLICATIONS OF FINITE ELEMENT ANALYSIS

The finite element can be used to analyse both structural and non-structural problems.

In structural problerns, displacement at each nodal point is obtained. By using these
displacement solutions, stress and strain in each element can be calculated.

Typical structural problems include:

1. Stress analysis including truss and frame analysis.

2. Stress concentration problems typically associated with holes, fillets or other

changes in geometry in a body.
3. Buckling analysis: Example: Connecting rod subjected to axial compression.
4. Vibration analysis: Example: A beam subjected to different types of loading.

In non-structural problems, temperature or fluid pressure at each nodal point is obtained.

By using these values, properties such as heat flow, fluid flow, efc., for each element can be
calculated.

Non-structural problems include:
1. Heat transfer analysis.
Example: Steady state thermal analysis on composite cylinder.
2. Fluid flow analysis.
Example: Fluid flow through pipes.
3. Distribution of electric or magnetic potential.

Example: Modeling of electre

gnetic field of motor.

Recently finite element analysis is used in some biomechanical engineering problems

(which may include stress analysis) typically include analysis of human spine, skull, hip
joints, heart, eye, etc.



