REGISTRATION NUMBER
 \square
 SRINIX COLLEGE OF ENGINEERING
 $2^{\text {nd }}$ INTERNAL EXAMINATION-2021-22

Subject-GTE
Semester-5 ${ }^{\text {th }}$
Branch-CE

Full Mark-100

TYPE A - ANSWER ALL QUESTIONS
Time-2.30 Hrs
$[2 \times 10=20]$

1. What is consolidation? How the total settlement of the soil will be calculated?
2. What is compressibility? On which factors compressibility is dependent?
3. Define pre consolidated, normally consolidated and under consolidated soil?
4. Describe compression index, coefficient of compressibility and coefficient of volume compressibility with respective formulae.
5. What are the drawbacks of direct shear test?
6. What is soil liquefaction and how does it occur?
7. Show the pressure distribution diagrams for real elastic material, cohesion less sand and intermediate soil?
8. What is isobar and pressure bulb?
9. How does failure of slopes take place?
10. Describe different types of slopes.

TYPE B:ANSWER ALL QUESTIONS
$[6 \times 8=48]$

1. Describe primary and secondary consolidation of soil ? A lab test on clay sample of 25 mm thick drained at top only 50% consolidation occurred in 11 minutes. Find the time required for corresponding clay layer in field, 2 m thick draining at top and bottom both. 70% degree of consolidation given that $\left(\mathrm{T}_{\mathrm{v}}\right)_{50}=0.196$ and $\left(\mathrm{T}_{\mathrm{v}}\right)_{70}=0.405$.
2. What are the assumptions of Bossinesq equation? Write down the equilibrium and compatibility equations of a three dimensional elastic body.
3. A direct shear test on aremoulded sample of sand use the following observation at failure. Normal load= 288 kN
Shear load $=173 \mathrm{kN}$
Crossectional area $=36 \mathrm{~cm}^{2}$
Determine the angle of internal friction, magnitude and direction of principal stresses in the zone of failure.
4. Briefly describe the vane shear test of a clay sample with neat sketches.
5. With neat sketch define Atterberg's limit. How can you determine the liquid limit in the laboratory, what is activity of soil and explain its value?
6. Laboratory sieve analysis was carried out on a soil sample using a complete set of standard IS sieves. Out of 600 gm of soil used in the test, 240 gm was retained on IS 600μ sieve, 300 gm was retained on IS 500μ sieve and the remaining was retained on 425μ
sieve. Find out the coefficient of uniformity of the soil and find out the classification of soil?
7. A layer of saturated clay 5 m thick is over lain by a sand 4 m deep. The water table is 3 m below the top surface. The saturated unit weight of clay and sand are $18 \mathrm{KN} / \mathrm{m} 3$ and $20 \mathrm{KN} / \mathrm{m} 3$ respectively. Above water table, the unit weight of sand is $17 \mathrm{KN} / \mathrm{m} 3$. Find out the effective pressure on a horizontal plane at a depth of 9 m below the ground surface and what will be the increase in the effective pressure at 9 m if the soil gets saturated by capillary, up to a height of 1 m above the water table?
8. Describe the factors those are affecting compaction. Derive the laplace equation of two dimensional flow under seepage pressure condition.

TYPE C: ANSWER ALL QUESTIONS

[16×2=32]

1. Describe the experimental procedure of direct shear test in the laboratory. Draw the mohr's circle obtained from this test.
Different samples of clay of 5 m thick were tested in lab and following results were obtained.
Initial void ratio $\left(\mathrm{e}_{\mathrm{o}}\right)=0.9$
Pre consolidation stress $\left(\bar{\sigma}_{c}\right)=120 \mathrm{kN} / \mathrm{m}^{2}$
Recompression index $\left(\mathrm{C}_{\mathrm{r}}\right)=0.03$
Compression index $\left(\mathrm{C}_{\mathrm{c}}\right)=0.27$
Estimate the consolidation settlement if present average overburden stress of the layer is $70 \mathrm{kN} / \mathrm{m}^{2}$ and the increase in average stress in the layer is $80 \mathrm{kN} / \mathrm{m}^{2}$.
2. Briefly write the testing procedure of triaxial shear test. Draw the mohr's envelope obtained from this test.
A long natural slope of cohessionless soil is at 12° to the horizontal. Taking $\emptyset=30^{\circ}$, determine the factor of safety of the slope. If the slope is completely submerged, what will be the change in the factor of safety.
