REGISTRATION NUMBER
 \square

SRINIX COLLEGE OF ENGINEERING

$1^{\text {st }}$ INTERNAL EXAMINATION-2021-22
Subject-SA-II
Semester-5 ${ }^{\text {TH }}$
Full Mark-60
ANSWER ALL QUESTIONS (PART-A)
[2X10]

1. Write the expression for horizontal thrust for a two hinged arch.
2. Draw a neat sketch of a suspension cable with two hinged stiffening girder.
3. Write the equation of a symmetric parabolic arch of span L and central rise ' h ' with left support as origin.
4. Write down slope deflection equation.
5. Define rotation factor.
6. Define carryover factor and distribution factor.
7. Define shape factor.
8. Explain the term plastic moment capacity.
9. Write assumptions made in slope deflection method.
10. Write two conditions for sway.

ANSWER ALL QUESTIONS (PART-B)

1. A two hinged parabolic arch of span 20 m and rise 3.6 m carries two concentrated load of 25 kN at crown and 20 kN at the left quarter span section. Find the horizontal thrust at each support and the bending moment at the loaded section.
2. Derive the expression for a shape factor for circular section having diameter D .
3. State upper bound and lower bound theorems and write their applications.
4. A continuous beam ABC consists of spans AB ad BC of lengths 5 m and 6 m respectively. Both ends A and C of the beam are having fixed support condition. The moment of inertia of span $A B$ is four times of $B C$. The span $A B$ carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$, while span BC carries a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$. Find the support moments using kani's method.
5. A two hinged parabolic arch of span 40 m and rise 8 m carries a point load of 80 kN at a distance of 10 m from the left support.Find the horizontal thrust at each support. Find also the maximum bending moment.
6. A cable of span 150 m and deep 15 m carries a load $6 \mathrm{kN} / \mathrm{m}$ run of horizontal span. Find the maximum tension for the cable and the inclination of the cable at the support. Find the forces transmitted to the supporting pier.
(i) If the cable passed over smooth rollers on the top of the pier.
(ii) If the cable is clamped to a saddle with smooth roller resting on the top of the pier.
For each of the above cases the anchor cable is 30° to the horizontal of the supporting pier is 20 m high. Find the maximum B.M. for the pier.
7. A fixed beam $A B C$ has two spans, $A B=6 \mathrm{~m}$ and $B C=4 \mathrm{~m}$. A udl of $30 \mathrm{Kn} / \mathrm{m}$ acts on span $A B$, on $B C$ appoint load of 20 kN acts at 1 m from ' B '. Analyze the beam using slope deflection method and also draw bending moment diagram.
