| Registration No : |  |  |  |  |  |
|-------------------|--|--|--|--|--|
|                   |  |  |  |  |  |

Total Number of Pages : 03

B.Tech. 15BE2101

| 2 <sup>nd</sup> Semester Back Examination 2017-18 |                                                                         |                                                                                |            |                                    |          |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------|------------------------------------|----------|--|--|--|
|                                                   | BASICS OF ELECTRONICS                                                   |                                                                                |            |                                    |          |  |  |  |
|                                                   | BRANCH : AEIE, AERO, AUTO,                                              |                                                                                |            |                                    |          |  |  |  |
| E                                                 | BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, |                                                                                |            |                                    |          |  |  |  |
|                                                   | FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA,     |                                                                                |            |                                    |          |  |  |  |
|                                                   | METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE                    |                                                                                |            |                                    |          |  |  |  |
|                                                   | Time : 3 Hours                                                          |                                                                                |            |                                    |          |  |  |  |
|                                                   |                                                                         | Max                                                                            | K Ma       | arks : 100                         |          |  |  |  |
|                                                   |                                                                         | Q.C                                                                            | OD         | E : C920                           |          |  |  |  |
|                                                   |                                                                         | Answer Part-A which is co                                                      | mpi        | ulsory and any four from Part-B.   |          |  |  |  |
|                                                   | The figures in the right hand margin indicate marks.                    |                                                                                |            |                                    |          |  |  |  |
|                                                   |                                                                         | Answer all parts                                                               | of         | a question at a place.             |          |  |  |  |
|                                                   |                                                                         | $Part = \Lambda (\Lambda na)$                                                  |            | all the questions)                 |          |  |  |  |
| 01                                                |                                                                         | Answer the following questions:                                                | mul        | tinle type or dash fill-up type :  | (2 x 10) |  |  |  |
| G                                                 | a)                                                                      | In a B IT with $\beta = 100 \alpha$ equals                                     | mui        | uple type of dash nil-up type .    | (= × 10) |  |  |  |
|                                                   | u)                                                                      | (a) 0.00                                                                       | (h)        | 00                                 |          |  |  |  |
|                                                   |                                                                         | (a) 0.99                                                                       | (D)        | 99                                 |          |  |  |  |
|                                                   | ь)                                                                      | (C) I<br>Avalanaha braakdawn raaulta baaia                                     | (u)        | 1.01<br>due te                     |          |  |  |  |
|                                                   | D)                                                                      | Avalanche breakdown results basically due to                                   |            |                                    |          |  |  |  |
|                                                   |                                                                         | (b) strong electric field across the i                                         | unct       | lion                               |          |  |  |  |
|                                                   | (c) emission of electrons                                               |                                                                                |            |                                    |          |  |  |  |
|                                                   |                                                                         | (d) rise in temperature                                                        |            |                                    |          |  |  |  |
|                                                   | c)                                                                      | For an Op-amp with negative feedb                                              | ack.       | the output is                      |          |  |  |  |
|                                                   | (a) equal to the input (b) increased                                    |                                                                                |            |                                    |          |  |  |  |
|                                                   |                                                                         | (c) fed back to the inverting input                                            | (d)        | fed back to the noninverting input |          |  |  |  |
|                                                   | d)                                                                      | d) Which number system has a bas                                               | e of       | 16                                 |          |  |  |  |
|                                                   |                                                                         | (a) Decimal                                                                    | (b)        | Octal                              |          |  |  |  |
|                                                   |                                                                         | (c) Hexadecimal                                                                | (d)        | Binary                             |          |  |  |  |
|                                                   | e)                                                                      | ) e)gates are known as universal gate.                                         |            |                                    |          |  |  |  |
|                                                   | f)                                                                      | f) A constant current source supplies a current of 300 mA to a load of 1 Kohm. |            |                                    |          |  |  |  |
|                                                   |                                                                         | When the Load is changed to 100 c                                              | hm,        | the load current will be           |          |  |  |  |
|                                                   |                                                                         | (a) 3 Amp                                                                      | (b)        | 300 mAmp                           |          |  |  |  |
|                                                   | ~)                                                                      | (c) 30 mAmp                                                                    | (d)        | 600 mAmp                           |          |  |  |  |
|                                                   | g)                                                                      | I ne Op-amp can amplify                                                        | (h)        |                                    |          |  |  |  |
|                                                   |                                                                         | (a) both a cland dia signals                                                   | (d)        | d.c. signals only                  |          |  |  |  |
|                                                   | h)                                                                      | An oscillator employs                                                          | (u)<br>foo | dback                              |          |  |  |  |
|                                                   | ,                                                                       | (a) Positive                                                                   | (h)        | Negative                           |          |  |  |  |
|                                                   |                                                                         | (c) Neither positive nor negative                                              | (d)        | Data insufficient                  |          |  |  |  |
|                                                   | i)                                                                      | The forward voltage drop across a s                                            | silico     | on diode is about                  |          |  |  |  |
|                                                   | -,                                                                      | (a) 1.2V                                                                       | (b)        | 0.3V                               |          |  |  |  |
|                                                   |                                                                         | (c) 0.7V                                                                       | (d)        | 1.0V                               |          |  |  |  |
|                                                   | j)                                                                      | The doping level in a zener diode is                                           | ···/       | that of a crystal diode            |          |  |  |  |
|                                                   |                                                                         | (a) the same as                                                                | (b)        | less than                          |          |  |  |  |
|                                                   |                                                                         | (c) more than                                                                  | (d)        | none of the above                  |          |  |  |  |
|                                                   |                                                                         |                                                                                |            |                                    |          |  |  |  |

(2 x 10)

## Q2 Answer the following questions: *short answer types:*

- **a)** Give the load line of a BJT amplifier if  $v_{cc} = +9v$  and  $R_c = 1.8K\Omega$ .
- **b)** Explain Early effect of BJT.
- c) Differentiate between zener breakdown and avalanche breakdown.
- d) What is Bark Hausen criteria?
- e) Difference between Practical Op-amp and Ideal Op-amp.
- f) Draw the V-I characteristic of Zener diode.
- g) Implement Half Adder using AND and OR gate.
- h) State De-Morgan's theorem.
- i) What is the relationship between period of waveform and frequency?
- **j)** What will appear on the screen of CRO when time base voltage is given to Y-plate and pulse is given to X-plate?justify?

## Part – B (Answer any four questions)

- **Q3 a)** With neat circuit diagram explain the working principle of Full wave center- (10) tapped transformer rectifier and derive the expression for its efficiency.
  - b) In the center tap fullwave rectifier shown below, find i)peak, average, rms value of load current ii) ripple factor iii) efficiency iv)PIV



- Q4 a) With neat diagram explain the formation of a potential barrier in a p-n junction (10) and show the polarity of the Barrier potential and draw the V-I characteristic of p-n junction diode.
  - b) Determine the output waveform of the circuit given below. Assume ideal (5) diode.



- Q5 a) Realize Op-amp as adder, subtractor, buffer, integrator and differentiator (10) circuit.
  - **b)** In the fig. given below if  $v_i = 0.5V$ , calculate the output voltage  $v_o$  and the (5) current in  $10K\Omega$  resistor.



| Q6 | a)<br>b) | With a neat diagram explain the basic operation of bipolar junction transistor.<br>Draw its input and output caracteristic and briefly explain why biasing is<br>needed?<br>Explain how BJT is converted to hybrid- $\pi$ model and why modeling is<br>needed? | (10)<br>(5) |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Q7 | a)       | With a neat block diagram explain the operation of cathode ray tube(CRT),<br>and how phase measurement can be done using an Oscilloscope through the<br>Lissaious metod?                                                                                       | (10)        |
|    | b)       | Write down a short note on Wien-Bridge Oscillator.                                                                                                                                                                                                             | (5)         |
| Q8 | a)<br>b) | Realize Full adder using NAND Gate, NOR Gate and Multiplexer.<br>Perform the following conversion:<br>i) $(142.623)_{10} = ()_2$ ii) $(BPUT.2018)_{16} = ()_8$ iii) $(BPUT.2018)_{16} = ()_{10}$<br>iv) $(100100111001.1001)_2 = ()_{16}$                      | (10)<br>(5) |
| Q9 | a)       | State De-Morgan's theorem. Convert the Boolean function $Y = A\overline{B} + BC + \overline{AC}$                                                                                                                                                               | (10)        |
|    | b)       | Apply De-Morgan's law and minimize the expressions:                                                                                                                                                                                                            | (5)         |

i)  $\overline{ABCD}$  ii)  $\overline{A+B+C+D}$  iii)  $\overline{\overline{ABCD}}$  iv)  $\overline{A+B+\overline{C}}+D(\overline{E+F})$