Reg	jistra	tion No :
Total Number of Pages : 02 B.Tech 15BS1104 2 nd Semester Back Examination 2017-18 MATHEMATICS-II BRANCH : AEIE, AERO, AUTO,		
BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE Time: 3 Hours Max Marks: 100		
Q.CODE: C600 Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.		
0.4		Part – A (Answer all the questions)
Q1	a)	Answer the following questions: multiple type or dash fill up type: (2 x 10) What is the Fundamental period of $f(x) = \sin(2018x + 2015)$
	b)	$(a) \frac{2\pi}{2015}$ (b) $\frac{2\pi}{2016}$ (c) $\frac{2\pi}{2018}$ (d) none What is the value of $L[\delta(t)]$, where $\delta(t)$ is the unit impulse function
	c)	(a) 0 (b) 10 (c) 100 (d) none The value of $\iint_R f(x,y) dx dy$, where $f(x,y) = x$; $R: 0 \le x \le 1, 0 \le y \le 2$
	d)	$S_{\underline{L^{-1}}[\frac{1}{(s-5)^2}]} = \underline{\phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
	e)	The curl of $xyz^2i + yzx^2j + zxy^2k$ at (1,2,3) is Let $U(t)$ be the unit step function then, the Laplace transformation of $f(t)$ =
	g)	$(t-5)U(t-5)$ is What is the coefficient of $\cos nx$ in Fourier series expansion of
	i)	The function $f(x) = \frac{\pi^2}{12} - \frac{x^2}{12}$ in $\left(-\pi, \pi\right)$ a) $1 - (-1)^n$ (b) π (c) 0 (d) none The Fourier sine transformation of the function $f(x) = e^{-2x}$ is The value of Convolution $2 * \sin 2t$ is Let $f(x, y, z)$ be any scalar function then grad $[f(x, y, z)]$ is a (a) Scalar function (b) vector function (c) constant function (d) none
Q2	a)	Answer the following questions: Short answer type: (2 x 10) What is the relation between Beta function and gamma functions and also find $\beta(5,3)$.
		Evaluate $\int_0^1 x^4 e^{-x} dx$
	c)	If $f(x,y) = x^2 \cos y$ then what is the value of $\nabla^2 f$ at $(0,0)$.
	d)	What is the value of $L[g(t)]$ where $g(t) = \begin{cases} 0, & t \le \frac{1}{2} \\ t + \frac{3}{2}, & t > \frac{1}{2} \end{cases}$
	e)	Using Convolution, find the value of $L^{-1}\left[\frac{1}{s^2(s^2+1)}\right]$.
	f)	Evaluate $L[t^2 \cos t]$.

f) Evaluate $L[t^2 \cos t]$. g) Find the Directional derivative of the function $f = e^x + e^y$ at a point p (0,0) in the direction of the vector $\vec{a} = 2\hat{\imath} - 4\hat{\jmath}$.

- **h)** The value of $\int_C F(r) \cdot dr$, where $F = [y^2, -x^2]$ and C: Be the line segment from (0, 0) to (4, 4).
- i) Find a parametric representation of the equation of sphere $x^2 + y^2 + z^2 = 1$.
- j) Find the coefficient of $\sin nx$ in the Fourier series expansion of $f(x) = x^2$ (0 < x < 2π)

Part - B (Answer any four questions)

- Q3 a) Solve the following integral equation using Laplace transformation $y(t) = \sin 2t + \int_0^t \sin 2(t-u)y(u)du$ (10)
 - **b)** Show that $\Gamma(n+1) = n!$ where n is a positive integer. (5)
- Q4 a) Solve the following initial value problem using Laplace transformation $\frac{d^2y}{dt^2} 8\frac{dy}{dt} + 15y = 9te^{2t} \text{ with } y(0) = 5, y'(0) = 10$
 - b) Show that $L\left[\frac{\cos \alpha t}{t}\right]$ does not exist. (5)
- **Q5** a) Evaluate the Surface integral $\iint_S F \cdot n \, dA$ by Gauss divergence theorem where, $F = [\cos y, \sin x, \cos z], s$ is the surface of $x^2 + y^2 \le 4, |z| \le 2$.
 - **b)** Evaluate $\int_C F \cdot dr$ where $F = (x^2 + y^2)i + xyj$ and C be the arc of the curve $y = x^3$ from (0,0) to (3,9).
- **Q6** a) Find the polar moment of inertia about the origin of the mass of the density f(x,y) = 2018 in the region : $0 \le y \le 1 x^2$, $0 \le x \le 2$.
 - **b)** Find the coordinates of the center of gravity of a mass of density f(x, y) = 1 in the region R :the triangle with vertices (0,0), (b,0) and (b,h).
- Q7 a) Find the Fourier series expansion of $f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 1 x & \text{if } 1 < x < 2 \end{cases}$ with period (10)
 - **b)** Find the Fourier Transformation of $(x) = \begin{cases} e^x ; & x < 0 \\ e^{-x}; & x > 0 \end{cases}$ (5)
- **Q8** a) Verify Stokes Theorem, when $F = y\hat{i} + (x 2xz)\hat{j} xy\hat{k}$ and surface 'S' is the part of the sphere $x^2 + y^2 + z^2 = 4$ above the xy plane.
 - **b)** Find the coordinates of the center of gravity of a mass of density f(x,y) = 1 in the region R : $x^2 + y^2 \le 1$ in the first octant. (5)
- **Q9** a) Prove that the Fourier integral $\int_0^\infty \frac{\cos \omega x}{1+\omega^2} d\omega = \frac{\pi}{2} e^{-x} for x > 0$ (10)
 - **b)** Using Gamma function evaluate $\int_0^\infty x^6 e^{-3x} dx$. (5)