Registration No :															
Total Number of Pages : 03B.Tech. PCI4D0034th Semester Regular / Back Examination 2017-18 OPTIMIZATION IN CIVIL ENGINEERING BRANCH : CIVIL Time : 3 Hours Max Marks : 100 Q.CODE : C1143B.Tech. PCI4D003Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.B.Tech. PCI4D003															
Part – A (Answer all the questions) Of Answer the following questions : multiple type or deah fill up type is a set of the following questions is a set of the following question of the following questions is a set of the following questions is a set of the following question of the following questions is a set of the following question of the following questions is a set of the following question of the following questio										(2 x 10)					
α,	a)	Operations re (i) Research (iii) Operation	searc n ns	h, wh	nich is	a ve	ry pov (ii) (iv)	verful De Nor	tool f cisior ne of f	or Mak	ing				(2 × 10)
	b) A basic solution is said to be if any one of the basic variables vanishes.														
	c) If a constraint is of less than type then variable is used to make it equality type.														
	d) method is better method to find out initial basic feasible solution.														
	e)	The Hungaria solve. (i) Transporta (ii) Travelling (iii) Both (i) ar	in me tion F Sales nd (ii)	thod Proble sman	for so m, Probl	lving em,	an as	ssignr	nent	proble	em ca	an als	o be us	ed to	
	f)	(ii) Variables (ii) Constraint (iii) Functions	e fur s	nction	s an	d cc	onstra	ints	are l	inear	rela	tionsl	nip bet	ween	
	g) Two applications of Dynamic Programming Problems are														
	h)	Which of th programming (i) Max z = 22 (ii) Min z = 3x (iii) Max z =6	e fol probl x+3y +10xy x -2x	lowing em? /+4y ² :y ² + :	g is Bx ²	not	the N	/alid	objec	tive	funct	ion f	or nonl	linear	
	i)	Types of integ	ger pr	ograr	nming	g prob	lems	are _	·				<u> </u>		
	j)	Which of the Search metho (i) The lower (ii) The upper (iii) The golde (iv) The funct	follov od for bound bound boun n ratio	wing optim I for t d for o be op	paran nizatic he se the se otimiz	neters on? arch i earch ed	s is n regior regio	ot red n n	quirec	l to u	ise th	ie Go	lden Se	ection	

(2 x 10)

(10)

(5)

Q2 Answer the following questions : Short answer type :

М

- a) Differentiate between Cannonical Form and Standard Form.
- b) Find Dual problem of the following Primal Problem

$$ax \ z = \ 7x_1 + 5x_2$$

s.t.
$$4x_1 + \ 2x_2 \le 50$$

$$2x_1 - 4 \ x_2 \le 90$$

$$5 \ x_1 + \ 7x_2 = 43$$

Where
$$x_1, \ x_2 \ge 0$$

- c) What is degeneracy in Transportation Problem?
- d) Explain the Non Linear Programming Problem.
- e) Describe K-T conditions.
- f) What are the advantages & disadvantages of Fibonacci Search Method and Golden Search Method?
- g) Briefly describe Dynamic Programming Problem.
- h) What is quadratic programming?
- i) Explain branch and bound method.
- j) Define Genetic Algorithm.

Part – B (Answer any four questions)

Q3 a) Solve the given LPP by Big M Method. $Max z = x_1 + 2 x_2$ s. t. $x_1 + 3x_2 < 30$.

t.
$$x_1 + 3x_2 \le 30$$
,
 $2x_1 + x_2 \le 20$,
 $x_1 + x_2 = 10$, Where $x_1, x_2 \ge 0$

b) Formulate the problem as a L.P.P..

A firm manufactures three products A, B, C. Time to manufacture product A is twice that for B and thrice that for C and if the entire labour is engaged in making product A, 2400 units of this product can be produced. These products are to be produced in the ratio 4 : 2: 3. There is demand for at least 260, 310 and 240 units of products A, B and C and profit earned per unit is Rs. 80/-, Rs. 30/- and Rs. 50/- respectively.

Q4 a) Find the optimal solution of the following Transportation Problem by MODI (10) Method.

22	20	23	30
34	19	21	40
24	32	14	90
10	80	70	

b) Solve the following assignment problem.

12	19	9	17
11	17	15	13
10	15	13	12
17	12	18	16

(5)

Q5 a) Find the optimal solution to the following Integer Programming Problem. (10) $Max z = 2x_1 + 5x_2$ s. t. $x_1 + 2x_2 \le 4$, $6x_1 + 2x_2 \le 9$ Where x_1 , $x_2 \ge 0$ and x_1 , x_2 are integers. Describe recursive equation approach to solve Dynamic programming problem. b) (5) Q6 a) Use dynamic programming to solve the following problem : (10) $Min \ z = \ y_1^2 + y_2^2 + y_3^2$ s.t. $y_1 + y_2 + y_3 \le 10$ Where $y_1, y_2, y_3 \ge 0$ b) Describe dynamic programming as an approach for optimizing multistage (5) decision process. a) Minimize $f(x) = 0.65 - \left[\frac{0.75}{1+x^2}\right] - 0.65 x \tan^{-1}(1/x)$ in interval [0,3] Q7 (10)By the Fibonacci Method using n=6. Solve the given NLPP by Kuhn-Tucker Conditions. b) (5) $Max \, z = \, 6x_1 + 7x_1^2 - 5x_2^2$ s.t. $x_1 + 2x_2 \le 10$ $x_1 - 3 x_2 \le 9$ Where $x_1, x_2 \ge 0$ (10) Q8 a) Solve the given Quadratic programming problem Max $z = 2x_1 + 3x_2 - x_1^2 - x_2^2$, s. t. $x_1 + x_2 \le 2$, Where $x_1, x_2 \ge 0$ Describe different operations of Genetic Algorithm. b) (5) Q9 a) Solve following problem (10) $Z = 25(x_1 - 3x_2)^2 + (x_1 - 3)^2$, s. t. $x_1 + 2x_2 = 9$ using projected Min gradiant method. b) Difference and similarities between Genetic Algorithm and Traditional Methods. (5)