Registration no:

Total Number of Pages: 02

B.Tech PCCI4303

(2 x 10)

(5)

5th Semester Back Examination 2017-18 Advance Mechanics of Materials BRANCH: Civil Time: 3 Hours Max Marks: 70 Q.CODE: B219

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

- a) What is strain energy theory?
- **b)** Differentiate: repeated stress and completely reverse stress
- c) Define is shear centre.
- d) Write down the advantage of compounding thick cylinder.
- e) State and explain Castigliano's theorem.
- f) What is neutral axis in bending?
- g) What is notch sensitivity
- **h)** Why the trapezoidal cross-section of a crane hook is preferred over a rectangular cross-section?
- i) What is stress concentration?
- j) What is endurance limit?
- Q2 a) What are the stress invariants and strain invariants? Explain. (5)
 - b) Given a state of stresses at a point with respect to a convenient (5) coordinate system (x, y, z) be σ_x = 100 MPa, σ_y = -60 MPa, , σ_z = 40 MPa, τ_{xy} = 80 MPa, τ_{yz} = τ_{zx}= 0 MPa. Determine (a) the principal normal stresses and the direction.
 - (b) the principal shear stresses.
- Q3 a) Derive an expression for deflection of a cantilever beam of uniform cross- (5) section is loaded by concentrated force acts its free end.
 - **b)** Explain the maximum distortion energy theory.

Q4	a) b)	Derive the Lame's equation. Calculate the thickness of metal necessary for cylinder shell of internal	(5) (5)
	.,	diameter 160 mm to withstand an internal pressure of 25 MN/m^2 , if maximum permissible tensile stress is 125 MN/m^2 .	(0)
Q5	a)	Data taken from a rectangular rosette as shown below.	(5)
		ϵ_0 = 750µ, ϵ_{45} = -110µ, ϵ_{90} = 210µ and E value is 200 kN/mm ² and poison's ratio (γ) is 0.3 for the material.	
	L)	Find out the principal strains and corresponding principal stresses.	(5)
	b)	Derive the differential equations of equilibrium in three dimensions.	(5)
Q6	a)	What do you mean by compatibility equations? What is its physical	(5)
	b)	significance? Find out the equation of elastic strain energy due to bending moment.	(5)
Q7		Derive the formula for bending stress of a curved beam having rectangular cross-section.	(10)
Q8		Write short answer on any TWO:	(5 x 2)
	a)	Octahedral shear stress theory	
	b)	Plane stress and plane strain condition.	
	c)	Stress optic law	
	d)	Resistance strain gauges	